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ABSTRACT

The deep ocean has a refractive waveguide velocity structure created by

variations in temperature, salinity and pressure. Because the sound speed changes

slowly with range and average depth-dependent profiles are known from

measurements, an approximate solution to the acoustic field in the waveguide can

be formed using perturbation techniques. We then seek to formulate a direct

inversion algorithm based on the perturbative solutions. Under certain restrictions,

the unknown velocity perturbations about a background profile and the scattered

field data can be written as a Fourier transform pair.

In this thesis, we investigate two well-known perturbative solutions; the Born

amplitude expansion and the Rytov phase expansion. The approximations,

although closely related, behave quite differently depending on the size of the

perturbation, the distance traveled in the perturbed media and the local field

gradient. Studying the behavior of the approximations in the forward problem

gives an indication of the size and type of perturbations recoverable in the inverse

problem.

We begin by investigating the perturbative solution behavior for simple

velocity structures. In a constant velocity or a layered waveguide, the solutions

and the first order errors can be derived explicitly. Although not representative of
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a true ocean, the behavior of the Born and Rytov solutions for these s;mple

velocity structures permits us to qualitatively predict their behavior in an

inhomogeneous ocean environment. Numerical examples using depth-dependent

background profiles confirm that the range of validity of the distorted-wave

approximations is consistent with that found in the constant background test cases.

The inverse technique consists of relating the scattered data and the

perturbation as a Fourier transform pair. In order to derive the inverse relation,

the phase of the transform must be monotonic. Because the energy propagates via

refraction in the ocean, this criteria can not be met globally. In fact, the regions in

the ocean waveguide in which the phase is monotonic are shadow zones; regions

where the waveguide is not well-illuminated. In a insonified waveguide, however,

the phase is not monotonic and the inversion algorithm is invalid.

Although inverse algorithms using Fourier techniques were found to be

inappropriate for perturbation reconstruction in the ocean, the range of validity of

the Born and Rytov propagation models in a depth-dependent environment was

established. This has not been previously done, and, as a result, the knowledge

obtained can be used to investigate other inverse formulations based on these

perturbative solutions.
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INTRODUCTION

In the last decade, the inverse problem in the ocean has received considerable

attention from the ocean acoustics and oceanographic scientific communities. In

1979, Munk and Wunsch proposed a inverse method that is now known as ocean

acoustic tomography. This technique consists of measuring ray travel times

between source-receiver pairs and inverting these to determine perturbations to an

assumed background profile. Many experiments have been conducted proving the

validity and usefulness of the technique as well as its limitations (for some of the

earliest results see Spiesberger, Spindel and Metzger 1980; Brown et al. 1980; Munk

and Wunsch 1982; Spiesberger 1983; Munk and Wunsch 1983). Because the travel

time equations are linearized, the background or guess profile must be known to

within -.-2 m/s of the true profile. The inversion methodology is in the class known

as indirect inversion techniques; a background profile is chosen, the forward model

is run repeatedly and the results compared to the experimental data. In other

words, the technique is based on iteration of a forward model.

In this thesis, we attempt a different approach and formulate a direct

inversion algorithm. Using first order perturbation expansions, the scattered field

data as a function of frequency and the profile perturbation as a function of the

phase can be directly related as a Fourier transform pair. However, because the
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inversion is based on the forward model we first must investigate the range of

validity of the perturbative solutions in the ocean waveguide. The theoretical

analysis of the forward model is done in chapter 2 and numerical examples are

presented in chapters 3 and 4.

We study two perturbative solutions; the Born amplitude expansion (Born

1926) and the Rytov phase expansion (Rytov 1937; Chernov 1960). The

background field, on which the perturbative solutions are based, is chosen to be the

proper mode solution; the discrete part of the normal mode solution. The normal

mode representation, which contains both the discrete and continuous spectrum, is

exact under certain restrictions (see chapter 1). In the far field, the continuous

spectrum can be neglected and the proper or propagating modes are the main

contribution to the solution.

In order to obtain simple error estimates for a waveguide geometry, we first

investigate the perturbative solutions in a constant background environment.

When the background is chosen to be a constant, the solutions are known simply

as the Born and the Rytov approximations.

Although the maximum deviation in the sound speed in the deep ocean is only

about 10% over the entire waveguide, the background velocity structure in the

ocean cannot be assumed constant. Therefore, we must choose a depth-dependent

background sound speed structure to obtain valid zeroth order solutions in the
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refractive ocean waveguide. In this case, the perturbative approximations are

called the distorted-wave Born (DWB) and the distorted-wave Rytov (DWR) to

distinguish the solutions from those based on a homogeneous background.

Once the forward model has been investigated, we have an estimate of the

magnitude and extent of perturbations that can be recovered in an inversion. In

chapter 5, we determine the applicability of a Fourier inverse technique by

studying the attributes of the transform kernel as a function of depth and

frequency. Although no inversions were obtained due to phase averaging, band-

limiting and stationary phase points in depth, the analysis leads to a better

understanding of the type of direct inversion algorithms that could be used to

reconstruct depth-dependent perturbations.

The major new work presented in this thesis is the characterization of the

direct propagated acoustic field using approximation methods and the formulation

of inversion representations using these approximations.
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1. MODELING THE SOUND FIELD IN THE OCEAN WAVEGUIDE

1.1 Introduction

The underwater sound channel or SOFAR (Sound Fixing And Ranging)

channel, discovered in the early 1940's by M. Ewing and J.L. Worzel (1948), is the

most characteristic fcature of the deep ocean at moderate and equatorial latitudes.

This acoustic channel is formed by temperature, pressure and salinity variations in

the ocean. The temperature and salinity decrease below the ocean surface causing

a corresponding decrease in the sound speed. At approximately 1 kilometer (km)

below the surface, a leveling off of the temperature decrease and steadily increasing

pressure causes a nearly linear increase in the sound speed as the depth is further

increased. Thus, an acoustic waveguide is created in which sound can propagate,

through refi action, for hundreds of kilometers.

Although the ocean has both regular and random inhomogeneities, this thesis

will only deal with regular or deterministic effects; in particular, propagation in the

underwater sound channel. The sound field is modeled using the acoustic wave

equation assuming a pressure release surface and either a rigid bottom or an

infinite half space below the waveguide bottom. We will use a point cylindrical

monochromatic source representation and assume the medium is cylindrically

symmetric. In general, the sound speed is a function of both depth and range.
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In the next section, we briefly discuss the attributes of several numerical

propagation models in use today (for a summary of numerical propagation loss

models, see DiNapoli and Deavenport 1979); in particular, the choice of a

background model on which the perturbative solutions are based. The last section

of this chapter illustrates the variakion of the sound field as a function of source

depth and frequency for several sound speed profiles. These plots are generated

from the proper or discrete mode solution; the background model used throughout

this thesis.

1.2 Numerical Models

A variety of propagation codes have been developed to model the sound field

in the ocean. Each is valid within a certain range of chosen medium parameters.

Including even a condensed discussion of all the computer codes currently in use is

impossible. Instead, we first briefly describe two propagation loss models; the

classical ray method and the parabolic approximation to the Helmholtz equation.

Next, we focus on a third, the discrete mode solution, which is the background

model used in this thesis. The rationale for basing the perturbative solutions on

this particular model will be made clear in the remainder of this section.

The classical ray equations and the parabolic approximation are derived based

on assumptions about the propagation environment. The ray equations are forined
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from a high frequency assumption and by neglecting diffraction effects (Born and

Wolf 1965). The parabolic equation, originated by Leontovich and Focal (1946)

and introduced to the ocean acoustics community by Hardin and Tappert (1973),

is based on a narrow angle approximation. In both of these cases, approximate

equations are derived from the Helmholtz equation and it is from these equations

that the solutions are found.

The ray representation has a intuitive geometric appeal. Rays are lines

orthogona! to the wavefronts and so point in the direction of propagation. The

rays can be found from the eikonal equation independent of the amplitude. The

amplitude can be calculated by finding the intensity along each ray assuming no

coupling between rays. However, the theory is invalid in shadow zones (regions in

which trapped rays do not penetrate) and near caustics (envelopes of the family of

rays) because the diffraction effects are neglected in deriving the equations. As the

range increases, the caustic regions become wider, further limiting the applicability

of ray theory. In addition, the eikonal and transport equations are derived under

the high frequency assumption; the length scales in the problem must be much

greater than the wavelength of sound. By studying the ray-mode connection,

corrections have been made to increase the accuracy of the ray models (Pedersen

and Gorden 1972) or alternately, a hybrid ray-mode propagation model can be

implemented (Kamel and Felsen 1982). Nonetheless, in order to avoid the

limitations of ray theory, we turn to full-wave representations of the field.
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The parabolic approximation to the Helmholtz equation is based on narrow

angle assumption. The limited angular aperture, characteristic of long range sound

propagation in the ocean, makes a parabolic approximation ideal for the deep ocean

environment. Another advantage of the parabolic equation solution is that it is

numerically solved using the split-step algorithm, which permits the solution to be

marched in range. However, the parabolic is exact only for horizontal rays; any

angle off the horizontal results in a distortion of the modal phase which increases

with range (Brekhovskikh and Lysanov 1982). As with the ray equations,

corrections have been made to the parabolic which reduce the phase error

substantially (DeSanto, Perkins and Baer 1978), but nonetheless, the solution is

derived from a parabolic equation instead of the elliptical Helmholtz equation.

The normal mode representation of the field is an exact solution of the

Helmholtz equation if the sound speed depends only on depth and the boundaries

of the waveguide are planar; parallel to the range coordinate. In the near field of

the source, the normal mode solution includes both the discrete and continuous

spectrum. Away from the source, however, the continuous spectrum is negligible

and only the propagating modes contribute significantly to the field solution

(Ewing, Jardetzky and Press 1957); accordingly, only these modes are computed

numerically. As contrasted with the ray and parabolic solutions, the exact solution

to the Helmholtz equation is found and then a portion of the solution discarded in

the far field. The normal mode solution is accurate for all frequencies and the
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proper mode solution becomes increasingly accurate the farther we are from the

source (Tolstoy and Clay 1985). Because we are interested in long range low

frequency sound propagation, the proper mode solution was chosen to be the

background model from which the distorted-wave Born and Rytov solutions are

constructed.

1.3 Examples of Waveguide Propagation

In this section, several examples of waveguide propagation are illustrated with

the use of color pixel maps. The field strength in the waveguide is represented by

the transmission loss in decibels (dB). The transmission loss is defined by

-20 log10 I PIP ref I, where P is the pressure field and P,1 is the field strength at I

meter (m) from the source.

In order to illustrate the focusing effect that the SOFAR channel has on

sound propagation, we compare the propagation loss in a constant velocity

waveguide to that of a bilinear profile with a sound speed minimum at 1 km depth.

Effects of source placement in depth and changes in the source frequency are also

compared. Before illustrating the acoustic field behavior for different waveguide

geometries, we first briefly discuss the discrete modal solution.

Recall that we are solving the Helmholtz equation. If the sound speed in the

waveguide is constant or at most depends on depth, the homogeneous form of the
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equation is separable. The range solution is an outgoing wave Hankel function.

The vertical wave function, 4, satisfies the equation

AL+ k2n 2 (Z) -

with boundary conditions at the surface and bottom of the ocean. The index of

refraction, n(z), is given by c0 /c(z) and the reference wavenumber is

ko = 24rf/c .; co is the reference sound speed, usually chosen as the minimum value

in the waveguide, c (z) is the depth-dependent sound speed and f is the source

frequency. Because we are solving a boundary value problem, there are non-trivial

solutions, .bn only for a discrete set of values of the parameter, C.. Therefore, the

are the eigenfunctions and the 6. are the eigenvalues of the problem. As will be

illustrated, the number of eigenvalues contributing to the solution depends on the

boundary conditions, the source frequency and the sound speed structure in the

waveguide.

Figures 1 and 2 illustrate the transmission loss in a constant velocity

waveguide for source frequencies of 25 and 100 Hertz (Hz), respectively. (The

maximum allowable phase velocity is chosen to be 1600 m/s.) The source is placed

at a depth of 500 m. We have a pressure release surface (P = 0 at the ocean

surface) and a hard bottom ( P-, 0, where the subscript denotes the depth

derivative).
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Figure 1. ,-, frnmiso los in a-, cosan Hect waeue. Tesu

freqencyis 2 Hz
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Figure 2. T1ransmission loss in a constant velocity waveguide. T1he source

frcquency is 100 Hiz.
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Because the velocity is constant over the full waveguide, there is no refraction;

the energy propagates through surface and bottom reflections. We have total

internal reflection due to the bottom boundary condition; in general, the angular

aperture extends from 0 to ±90 * measured from the horizontal at the source

position. As is evident from the isolated bright spots, the energy focuses only

locally.

The different structure in Figures 1 and 2 is due solely to the change in source

frequency. At 25 Hz, there are 50 modes contributing to the field, while at 100 Hz,

we have 4 times as many. A higher source frequency does not imply higher angles

but instead, results in a larger number of modes in the angular aperture. This is

easily seen from the relationship On = G - A 2 . In a constant velocity

medium, the index of refraction, no, is 1, so that horizontal wavenumber

eigenvalues are given by en2 - - An2 . The An vertical wavenumbers are given

explicitly by An = (2n-1)ir/2h where h is the width of the waveguide and n -

1,2,... If mjn = 0, we have only vertical propagation (the takeoff angle is ±90°)

and k, = (2N-1)r/2h so N = number of propagating modes = k h/7r + 1/2.

Determining N for source frequencies of 25 and 100 Hz using this equation, results

in the above values of 50 and 200 modes, respectively.

We now look at sound propagation in a refractive waveguide. In this case, the

waveguide lies over an infinite half-space having a sound speed that matches the
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sound speed at the bottom of the waveguide. Therefore, there are no bottom

reflections; only surface reflections and refraction. Illustrated in Figure 3 is the

sound speed profile used to generate the plots in Figures 4, 5, and 6. Figures 4 and

5 are the transmission loss plots for source frequencies of 25 and 100 Hz,

respectively. The source is placed on the channel axis at 1 km. The number of

propagating modes is found to be 16 (Tolstoy and Clay 1987) in Figure 4 and 64 in

Figure 5. In these examples, the number of modes depends on the change in sound

speed above and below the channel axis, the distance of the channel axis from the

surface and bottom of the ocean and, of course, the source frequency.

In contrast with the constant velocity waveguide, the refraction and

SOUND SPEED vs. DEPTH

1470 1505 1540

01 . =

a.IAJ
C

4.

Figure 3. Sound speed profile used in generating the results in Figures 4, & and
6. We assume an infinite half-space below the waveguide in which

the sound speed is constant and matches the sound speed at the
bottom of the waveguide.



T-3790 14

Figure 4. Transmission loss in a refractive medium generated using the profile

in Figure 3. The source is placed on the channel axis at I krrn arid
the source frequency is 25 Hz.
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Figure 5. Transmission loss in a rerractive medium generated using the profile
in Figure 3. The sonu~ i.s place(1 on the chwir1nel axis art I ki anid
the source frequency is 100 liz.
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1 CI

Figure 6. Transmission loss in a refractive medium generated using the profile
in Figure 3. The source is placed at a depth of 3 kin and the source

frequency is 100 Hz.
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channeling of the energy is clearly seen. Because the source is placed on the

channel axis, a large portion of the energy is propagating at nearly horizontal

angles with very little loss. It is also interesting to note the distinct ray-like

structure of Figure 5 as compared to Figure 4. As is well-known, a ray is the locus

of neighboring modes propagating in phase (Officer 1958; Tolstoy and Clay 1966),

and the higher the frequency, the greater the number of modes. Therefore, we

obtain a ray-like picture of the acoustic field.

Figure 6 illustrates the effect of moving the source below the channel axis; the

source is now located at a depth of 3 km. Although the waveguide is still

refractive, the source placement prohibits the trapping of energy in the vicinity of

the channel axis. The beam has narrowed and the width of the shadow zones has

increased. Instead of focusing over the entire range of propagation as in Figure 5,

the energy is locally focused at the source depth, at 65 km in range.

As illustrated in the previous three figures, the deep ocean waveguide is an

inhomogeneous environment in which sound propagates mainly through refraction.

This is contrasted with the field structure in a constant velocity waveguide in

which the energy propagates via reflection from the waveguide boundaries. In a

waveguide with a refractive velocity profile, the field structure depends on the

source frequency, the sound speed gradient and the source placement with respect

to the channel axis. If the source is placed in the vicinity of the channel axis the
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waveguide will be well-illuminated. As we move the source away from the axis, the

energy is progressively restricted to a narrower angular aperture and as a result,

the width of the shadow zones increases.

In subsequent chapters, we will investigate the behavior of two perturbative

solutions to the total acoustic field in which the background solution is chosen to

be the discrete part of the normal mode representation. Although the solutions

and their errors are initially analyzed in several constant velocity waveguides, we

stress that a constant background solution is aot a valid zeroth order solution in a

refractive ocean waveguide. The analysis is done simply to better understand and

predict the validity of the solutions in the inhomogeneous ocean environment.
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2. THE FORWARD MODEL

2.1 Introduction

The pressure field, P, in the ocean, can be shown to satisfy the inhomogeneous

Helmholtz equation. In general, closed form solutions cannot be found due to

complicated velocity structures. Instead, approximate solutions are constructed

based on our knowledge of the characteristics of the medium in which the wavefield

is propagating.

One method used in analyzing differential equations is perturbation theory.

Perturbation theory permits the formulation of approximate solutions if 1) a small

parameter, c, can be identified in the differential equation, 2) a zeroth order (E = 0)

solution can be found and 3) the true solution is closely approximated by the first

several terms in the perturbation series (Bender and Orszag 1978). Tclrcforc, in

solving the Helmholtz equation for an arbitrary velocity model using perturbation

techniques, we must be able to construct a background solution which is close to

the true solution or equivalently, the guess profile must be close to the true profile.

It is important to note that although the field is expanded in a perturbation series

in c, this is for convenience only. The actual small parameter is later identified as

the difference in the true and background refractive indices and c wi!l be set equal

to 1.
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Because the ambient range variability in the ocean is at most a few percent of

the depth variability, the background profile is chosen to be strictly depth-

dependent. The pressure field or zeroth order solution in this environment can be

written as a modal sum if the receiver is in the far field of the source. The

background solution in this thesis is computed using the Kraken normal mode code

(Porter 1985) and we perturb around this solution to form an approximation to the

total field. This is a major difference in approach from that generally used in other

disciplines such as atmospheric wave propagation and seismic exploration. A

constant background assumption will not give the correct zeroth order physics in

the ocean.

Two perturbation expansions are investigated in this thesis. The first, the

distorted-wave Born (DWB) solution, is formed by expanding the amplitude of the

field, and the second, the distorted-wave Rytov (DWR) by e-.anding the complex

phase. Although the DWB and DWR solutions are derived for arbitrary depth

and range-dependent profiles, only constant velocity and depth-dependent

examples are investigated numerically.

2.2 The Background Solution

The acoustic field in the ocean satisfies the inhomogeneous Helmholtz

equation
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[V2 + k2 1nP(r,z)p(ko,r,roZZo) = (r-r,)3(z-z,) (1)0 27r r

in cylindrical coordinates. P(ko,r,ro,z,zo) is the total acoustic pressure field that

we wish to approximate, V 2 is the cylindrical Laplacian, n(r,z) = co/c(r,z) is the

normalized sound speed in a depth and range dependent environment, and

ko = w/c 0 is the reference wavenumber. The source is located at a range r = ro

and a depth z = z.. We consider the general case of ro * 0 in order to construct

the scattered field.

The choice of the reference sound speed, co, is arbitrary. Because the

Helmholtz equation is independent of co, so are its solutions. From this it follows

that any approximate solution must depend only weakly on the choice of the

reference sound speed in order to be a valid representation of the total field.

The distorted-wave perturbative solutions are derived with the assumption

that information regarding the gross (i.e. purely depth-dependent) sound speed

structure of the ocean waveguide is known. Using this knowledge, a background

field, Po (ko, r, r0 , z, z0 ), which satisfies

[v2 + k2 n2 (z)P ° (k.rr ' zz)= - (r-r°)6(z-z)2r (2)

o0 0,0, 27rr

can be calculated. Since n.(z) is known, the P field can be thought of as an

incident field in this inhomogeneous environment. Because the oceanic sound speed

structure has an inherent depth variability, but depends weakly on range, the
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background, no(z), is chosen to be strictly depth-dependent, but is 'close' (in a

sense specified below) to the true index of refraction, n(r,z), for all ranges and

depths. By perturbing around the incident field solution, approximate solutiuns to

the total field can be formed.

2.3 The Distorted-Wave Born (DWB) Solution

The DWB solution is formed by expanding the total field, P(ko,rzrzzO), and

the index of refraction, n 2 (r,z), in powers of a small parameter, c. The total field,

which satisfies Eq. (1), is written as

P(ko,r,roz,zo) = PO + (PI + (3)

and the square of the index of refraction as

n 2 (,z) = n,(z) + n1(r, z) + (4)

Substituting Eqs. (3) and (4) into Eq. (1), equating powers of c and retaining

terms only up to 0(c) results in two equations. The O(E0 ) equation is Eq. (2).

and the O(E) equation is

[V' + kon'O(z)]P(ko,r,o~z,zo) = -Ic'nj(r,z)P,,. (5)

Because Eq. (5) is the Helmholtz equation with a source term, and our Green's

function is the incident field, Po, the solution to Eq. (5) is formed by integrating

over all source points. The field solution is independent of theta due to cylindrical
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symmetry. Performing the theta integration we obtain

PI (ko,r, r.,z, z.)

27rkof f Po(ko,r,r',zz')nl(r',z')Po(ko,r',ro,Z',zo)r'dr'dz" 6
0 0

for the first term in the perturbation expansion. Therefore, to first order in E, the

total field is given by

P(ko,r, r., zzo) _ pIB) (k.,r, r.,z, zo) = Po + cPI , (7)

where PB) (ko,r, r.,z, o) is defined as the first DWB approximation to the field

(e.g. Butkov 1968). Because P1 is commonly called the scattered field, Eq. (7) is

rewritten as

pjB)(ko,r, r.,z, zo) = Po + Ps. (8)

where c has now been set equal to 1.

The validity of the approximation is based on the assumption that the total

field is close to the incident field. Equivalently, I P/PO I must be much less than

1; i.e. the scattered field is small compared to the incident field. The accuracy of

the approximation depends on the size of the perturbation, the propagation

distance in the perturbed medium and the source frequency. We discuss this

further below.
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2.4 The Distorted-Wave Rytov (DWR) Solution

The first DWR approximation is simply related to the first DWB and can

therefore be derived from Eq. (8) (Fiddy 1986). Dividing both sides of Eq. (8) by

P, and taking the natural logarithm gives

pJ In 1+ P, (9)
In [j---- -in .(9

or since ln(l+a)-'a when a<<1, we can define the first DWR approximation, PjR)

by

In . (10)

Exponentiating both sides and multiplying by P, gives the first DWR

approximation

PJR) (ko 9r, roIZ1 Zo) .. Po ¢ .(1

where € = P/P o is the first term in a formal phase expansion,

=01 + 02 + (12)

and 01 is O(N), 02 is O( 2), etc. The full DWR field is derived in Appendix C.

Because we are mainly interested in the behavior of the first order

approximations, the terms DWB and DWR will denote the first order

approximations unless otherwise indicated.
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2.5 Discussion of Errors

As is evident from Eqs. (7) and (11) and the derivation of the DWR from the

DWB, the first order solutions are closely related. However, as derived by Keller

(1969) for the constant background solutions, and by Belykin (1985) for the

distorted-wave solutions, the first order relative error in the two approximations is

quite different. By relating terms in the series in Eqs. (3) and (12), Beylkin

establishes the relative DWB error

- =0 0 - _01 (13)P2

while the relative DWR error is

P - R) [] (14)

Although both expressions are order E2 , the DWB error has an extra term,

2 Since (as we shall see later) both 4 'I and '2 depend on range to the first

power, the DWB error term is O(E2 r2), while the DWR is O(E 2 r). Because of this,

the amplitude of the DWB field will grow like r as we propagate in range. The

DWR is expected to give a better approximation to the transmitted field.

We must keep in mind, however, that these are only first order errors and, in

addition, they are based on the assumption that the scattered field is much less

than the incident field. As previously discussed, the DWB requires that
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I P/P ,<< 1 in order for the approximation to be valid. But, although the

DWR was derived from the DWB using this assumption, the latter is not a

necessary condition for the validity of the DWR.

However, the DWR approximation has additional terms which are not evident

in the simple derivation of the DWR from the DWB. In Appendix C, where the

full DWR approximation is derived, the assumption is made that the integral of

[V1] 2, where q is the full DWR phase, is of lower order. This term will be of 0(E 2 )

only if the phase gradient is small; we can have no sharp discontinuities in the

complex phase term. This makes the behavior of the DWR difficult to predict

because the above error estimate is locally inaccurate if the ratio P/P o is

changing rapidly.

2.6 Explicit Solutions

The solution to Eq. (2) can be written in several ways. In this thesis, the

incident field is written as a sum of discrete modes. The solution is accurate if we

are in the far field; i.e. the continuous spectrum is negligible and only the discrete

modes contribute significantly to the field. The modal solution for an arbitrary

source point, derived in Appendix A, is

P,(ko,r, roZ) Zn)= 0(-, M)2 (C. r)Jo(C.ro) r>ro (15.a)
4.
en
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Po(k,r,r, "Zo) = ±Zko,oi)n)k z,n)o2)( ,ro)Jo(Enr) r<ro (15.b)
n

where the sum over n includes all the discrete modes. The radial wavenumber

eigenvalue is . and H$,2)(e.r) is the outgoing wave Hankel function of zeroth order

with harmonic time convention, e"'t. The DWB solution is written as

PtB ) (ko, r, r., z, zo)

00 h

Po + 27rk f f PO(kor,r',z,z')nI(r',z')Po(ko,r',roz',zo) r'dr'dz'. (16)
0 0

Substituting Eqs. (15) into (16), and setting ro = 0, we obtain

S rk2 100 h

r 0 n

m
- rk~zsef ~(~)i(z,En(. ) H 2)n(rz)r'o(r')

2 r h

8
0 0 n

• E¢(z', m)O(zo, ,.)H )C ,,r'),nlCr',z')r'dr'dz'. (17)

The range integration can be done analytically if the true profile is strictly

depth-dependent and we assume this here; i.e. we set nl(r',z') = nl(z'). The

range integrals, which we define as I(n,m), are evaluated for two cases; Em =f

and Cm = C (see Appendix D).
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If em = C in Eq. (17), then we write the solution symbolically as

PjB) (ko, r,0, z, zo) -" Po + Pan . (18.a)

P,, the scattered field term for Cm = ,, is given by

Pan(ko r, ro z, zo) = f fn
o n

HJ2) ( nr)
• O(z',W)(zo,U.) - dz. (18.b)

where H12) (Cn r) is the first order Hankel function. If Cm * Cn then

PJB) (ko,r,O,z, zo) = Po + Pionm (18.c)

and the scattered field defimed as Pnm is

ik2 h
Panm(kOrrozzo) = ~42-f EW n 1 (z')

0 n

I k0j2) ( mr)
EOm rn2 - dz' . (18.d)

The DWR, formed from the DWB as previously described, is

PjR) (ko, r,O,z, z) = Poexp (19.a)

if Cn = $n" Similarly, for em * , we obtain

PJR)(koIr,O,z, zo) = Poexp ,.1.[P,
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In the next chapter, the above equations will be evaluated for several constant

velocity profiles (i.. th " dcpth .C.Cnct SOlutI S arc f... Cxplicitly) and the

behavior of the Born and Rytov in these simple cases is investigated. Although not

representative of the velocity structure in an ocean waveguide, analyzing these

cases gives an indication of how the DWB and DWR approximations will behave

in a complex environment.
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3. CONSTANT BACKGROUND TEST CASES

3.1 Introduction

In this chapter, the behavior of the Born and Rytov approximations in two

constant velocity environments is discussed. Although a constant velocity

waveguide is not representative of a deep ocean, the solutions and error estimates

can be found analytically. Studying the behavior of the approximations using

simple velocity models often gives an intuitive feel for how the solutions will

behave in a variable velocity waveguide.

In the first example, the true and guess profile are chosen to be constant over

the entire waveguide. The total field is calculated using the true profile and the

incident field using the guess profile. The Born and Rytov solutions to the total

field are calculated and compared with the true solution. This case indicates how

the approximate solutions will behave if the incident or guess profile is different

from our true profile over the width of the waveguide, or equivalently, dictates how

closely our guess profile must match the true when the profile perturbation extends

over the full waveguide.

The second model investigated is a two-layer waveguide. The true profile has

two constant velocity layers and the first guess to this profile is a constant velocity

waveguide. Although, again not representative of an ocean waveguide, this case
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provides information on how the Born and Rytov approximations will behave when

the difference in the true and guess fields arises from a small velocity perLulbatioli

(confined to a portion of the waveguide) about a known background. The goal in

this thesis is to recover small perturbations about a depth-dependent background

profile, and approximate estimates of the magnitude and spatial extent of allowable

perturbations for the variable velocity case can be obtained from this example.

In both of these cases, the solutions can be found analytically and so simple

error estimates can be written explicitly. In addition, the constant velocity cases

serve as a check on the accuracy of the numerical calculations.

3.2 Constant Velocity Waveguide

3.2.1 Derivation of the Solutions

The total field in a constant velocity waveguide, n (z) = n,, is given by

P(kO,r,0,z, zo) = - sinAn zo sinAn z M2)(,r),(20)

n

where the n denote the horizontal wavenumber eigenvalues for the total field and

are defined by n = k2one - A n. The reference wavenumber is k, - - and the
Co

vertical wavenumbers are the An . The sine eigenfunctions arise from a particular

choice of boundary conditions. The pressure field is chosen to be zero at the
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surface and the z-derivative (since we have a flat bottom) to be zero at the ocean

bottom. The factor (2/h) 1/2 is the normalization constant for this set of

orthonormal eigenfunctions.

The initial guess field, for the constant velocity waveguide with index of

refraction, no is given by

P°(k°'r'Ojz'z°) = ! s in A ,,zos in ,\, z H(2)( ,r) '(1
P0k0r,~z 40  h 0- (21)

n

where the horizontal wavenumber eigenvalues for the background solution are

given by the e,, which are defined by &_2 = k2 n2 _ A"2. As is evident from Eqs.

(20) and (21), the eigenfunctions are identical. In a constant velocity waveguide,

the only difference in the two solutions are the values of the horizontal

wavenumbers.

From Eq. (17), the Born solution in a constant velocity medium is given by

Pj) (k, r,0,z,z) PO=2h 2 f f sinA zsinAnz' jj(2 (r)J 0 (,r')

0 0 n

'' sinrmz'sin mzo (2) (emr') r'dr'dz'

m

.2nhf E s in ) n z s in ~ n z " X2o) ( nr')JoC r)

2 r o n

• sinmzsinzo M2) (mr ')r' dr'dz (22)

m

where nt1, the constant velocity perturbation, is the difference, n - n~o, in the
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squares of the true and background refractive indices.

Because the perturbation is constant, both the range and depth integrals can

be evaluated explicitly. Evaluating the range integrals (see Appendix D) and

following the notation of Eqs. (18), the Born scattered field for Cn = Cm is

Psn(korT,,jzjzh) = . I_ -r sinAnzsin2 Anz'sinA)zo dz'. (23.a)
0 n

For Cn I- Cm, we obtain

Pnm(ko,r, ro,z, o)

ikn fhM 2)

f E sin,\, zmsin,\,nz' E sinXmZ 2sinAM Z) ( 2 dz". (23.b)

Because the eigenfunctions are orthogonal over the width of the waveguide and

there is no mode coupling due to the absence of a depth-dependent perturbation,

Eq. (23.b) is always zero. Evaluating the depth integral in Eq. (23.a), results in

the constant velocity scattered field solution

Psn(k 0,r~r0,ZIZ0 ) = ik°nir 4h H12) (Cnr) (24)
4h Zsineznsin.,zon

Therefore, the Born and Rytov solutions are formed by substituting Eq. (24) into

Eqs. (18.a) and (19.a), respectively.

The first order errors in the two solutions are discussed in the next section.

Because the errors have the form of a ratio of sums, explicit expressions are found
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for a single mode only. However, as will be seen in the numerical examples, the

single mode error estimates closely approximate the error for the multi-modal

solutions.

3.2.2 Error Analysis

As discussed in section 2.5, the first order errors can be derived in terms of

the first two Rytov phase terms, 01 and ¢'2. The first phase term in a constant

velocity waveguide is just

ik2-r, nA r., (25)
¢1 (ko,r,O,z,Zo) - 4h P sin \zsin\zo C(2

n

The second phase term, ¢2, is derived from the expression for the full Rytov

solution (see Eq. C.7). Assuming that the perturbation difference, n1 , is known

exactly, then to first order 02 is given by

c h

0k2(k0, rOjz~z0)=i -Z-f f Po(ko,r,r',z,z')
PO0 0

[ V¢i(ko,r',O,z',zo) P o(ko,r' ro, z', zo)r'dr'dz' (26)

therefore, the gradient of 01 and the incident field, P0 (ko,r,O,z,zo), are needed to

calculate 02.
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Because the phase terms have the form of a ratio of sums, a simple error

estimate can not be established for all modes. However, if we choose to look at the

errors for a single mode only, P. (ko,r, 0, z, z.) can be written explicitly as

P. I (k., r, O,z, z.) sin zsinAz k 2) (CI r) (27)

2h m0zi~zF4(i)(7

where P.1 (k,rO,zz.) denotes the field expression for the first mode, A1 is the

corresponding vertical wavenumber while 61 is the corresponding horizontal

wavenumber. This notation will be used throughout in deriving the subsequent

single mode expressions.

Using Eq. (27), the first phase term can now be written

411(ko,r,O,z,zo) - knr H 2)(ir) (28)2 Hf,2) (e r )  el

Using the asymptotic forms of the Hankel functions

H(,2)(r) = /

2 r 3w
H12 2C r)1/2r (29)

and canceling terms, #11 (k.,r,0,z, z.) is given by

ik nt (30)
st g(k,r,O,z,t ofo n I i ju

so the gradient of 01, is just
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Vi(ko,r,,o,zjzO)- 2CI r. (31)

Substituting Eq. (31) into Eq. (26) and evaluating the range integral for a single

mode, 021 becomes

021(k0 , r,0, z, zo) n I) (r) rh [_ 12 sin 2 AzIz, , . (32)

Performing the depth integration and cancelling like factors, the second phase term

becomes

421(ko, r)0, Z, zo) - - k n (33)
8el'

and we can now write the first order error estimates.

From Eq. (13), the first order Born error expression for a single mode is
p pjB) [1 r'O ni  (34)

P" - 8e12 0 8 e13

and from Eq. (14), the first order Rytov error estimate is

P-P[R) = 01(35)
P =8 1

As discussed in section 2.5, the Born error has a term that is of the order r2 nI,

while the Rytov error is order r n2. The growth in the Born approximation to the

transmitted field is well-known (e.g. Keller, 1969) and the Rytov solution is
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expected to give a better approximation to the true field solution.

Although the first order error estimates suggest in general how the two

solutions will behave, a modal analysis of the fields in the next section, yields the

errors in the first order solutions exactly for a single mode. The errors are seen

through the projection of the mode coefficient.

3.2.3 Modal Decomposition of the Born and Rytov Fields

Because the background solution is a modal representation of the field, the

Born and Rytov representations to the total field can also be considered to be

composed of a sum of normal modes. In general, the true mode functions would be

the unknowns, but in a constant velocity waveguide the functional form of the

eigenfunctions for the guess profile are identical to those of the true profile. This

permits a straightforward evaluation of the errors in the Born and Rytov solutions.

From Eq. (E.5), the Born coefficient for a single mode is

c,.= sn /[ + (36)

and Eq. (E.6) for the Rytov coefficient is

CIR = 11 sin( -"")exp . (37)

Crkon 1Clearly, if « <1, then the two coefficients are the same to first order. If,



T-3790 38

however, this quantity is not small, the Born exhibits an algebraic amplitude

growth, while the Rytov error is oscillatory. Therefore, although the Born error

estimates in section 3.2.2 are valid for any profile perturbation, the Rytov error

estimate is correct only if the scattered field is small with respect to the incident

field.

In the next section, the numerical results for a constant velocity waveguide

are presented and the analytical results of this section will be verified.

3.3 Constant Velocity Waveguide Example

The parameters for the constant velocity waveguide example are given in

Table 1. The true and background profiles are illustrated in Figure 7. The

transmission loss curves for the profiles are illustrated in Figure 8. The

transmission loss is defined as -20 log(-I P I ), where P is the complex field and
I "ref

Pref is the field at 1 mcter from the source.

Because the perturbation is small and the eigenfunctions are identical in the

constant velocity case, the true and background curves nearly overlay each other,

except perhaps at the 'nulls" where the modes have interfered destructively

creating a minimum amplitude. The amplitude behavior of the Born and Rytov

solutions can be qualitatively predicted by studying Figure 9; the ratios I P8 /P , I

vs. range. The ratios match until approximately 5 kin; this is the regime in which
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Table 1. Input Parameters: Test Case 1

INPUT PARAMETERS: TEST CASE 1

Range 1.-50. km
Source Depth 500. m

Receiver Dept 1  500. m
Source Frequency 25. Hz

Depth (m) Sound Speed (m/s)

True profile 0. 1500.
1500. 1500.

Guess profile 0. 1501.
1500. 1501.

Maximum Perturbation 1. m/s
Perturbation Width 1500. m

the ratio is less than 1/4. Beyond this range the Born ratio continues to grow

while the Rytov peaks at a ratio of two and then begins to decrease. Although the

behavior of the Born solution is easily predicted, determining the behavior of the

Rytov is more difficult.

The Rytov ratio does not exhibit algebraic growth except at small ranges

where both solutions are within their range of validity. From the modal

decomposition in section 3.2.3, we could assume little or no amplitude error.

However, neglecting the gradient of the ratio of the scattered to incident ficvd in
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SOUND SPEED vs. DEPTH

1498 1500 1502

CL
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Figure 7. Constant velocity profiles. The true sound speed is 1500 m/s. The
guess sound speed in 1501 m/s.
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Figure 8. True and background transmission loss curves for test case 1. The
curves are generated using the profiles in Figure 7. Because the
eigenfunctions have the same functional form, the curves are
indistinguishable.
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PS /P vs. RANGE
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Figure 9. Ratio of the scattered field to the incident field for the Born and
Rytov solutions for test case 1. The solutions are generated using
the background profile in Figure 7.

this decomposition will, in some cases, cause local errors in the Rytov field. In this

example, we might be inclined to predict a local error in the field solution at the

spike near 50 kn. However, estimating the value of the local gradient near this

point, results in a value less than 1. Therefore, the Rytov solution is predicted to

everywhere match the true solution.

The Born solution to the field and the true solution are illustrated in Figure

10. The growth of the Born solution with range is as predicted from the error

analysis and the modal decomposition. The Rytov solution to the field and the

true solution are illustrated in Figure 11. As expected from the results in the

previous section and the above discussion, the Rytov exhibits no amplitude growth,
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Figure 10. True and Born transmission loss curves for test case 1. The growth
of the Born solution with range is clearly seen.
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Figure 11. True and Rytov transmission loss curves for test case 1. Unlike the
Born solution, the Rytov is unaffected by the extent of the
perturbation.
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and matches the true profile almost exactly.

The behavior of the approximations is clearly demonstrated by viewing the

relative error in the transmission loss of the background, the Born and Rytov

solutions (see Figure 12) witl, respect to the true transmission loss. The Rytov

solution is the best fit; the small variations of the guess from the true have been

smoothed. However, for large r, the relative error in the Born transmission loss

grows approximately like as we propagate in range. This estimate is

obtained from the single mode solution. For a single mode, the amplitude behavior

with range for the true transmission loss is roughly logji/( I r)1/2 and for the

RELATIVE ERROR vs. RANGE
Cq

0B
Rytov

GuessI

1.0 25.5 0

RANGE (kin)

Figure 12. Relative error in the background, Born and Rytov transmission loss
curves for test case 1. The Born error is approximately 17% at 50
km. The error in the Rytov solution is approximately zero over the
entire range of propagation.

• • C A n
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Born transmission loss is log[1/( lr)1/2 (lqr 2 k0
4 n 1

2 / 12)1/2 ]. By assuming

ko.0 - and canceling terms, we obtain the above expression for the relative error.

To further confirm the results of the modal decomposition, we present some

numerical examples. Figures 13 and 14 illustrate the results of the Born and Rytov

modal decompositions, respectively, for a single mode. The amplitude of the Born

coefficient and the real part of the Rytov coefficient confirm the validity of the

expressions for the mode coefficients in the previous section. The amplitude of the

Born coefficients grows with range while the error in the real part of the Rytov

coefficients oscillate between 0 and 200 percent. On the other hand, the error in

the real part of the Born coefficients remains stable about zero as does the

amplitude of the Rytov coefficients.

To confirm that the multi-mode behavior matches that of the single mode, a

modal decomposition of the solutions using the first seven modes is illustrated in

Figures 15 and 16 over a range of 1-20 km. So, even for multiple modes, the errors

predicted by the single mode decomposition are qualitatively correct. The

accuracy of the multi-mode decompositions is verified by forming the transmission

loss using the recalculated Born and Rytov coefficients.

The real part of the Born coefficients are used to recalculate the Born

transmission loss. The resultant curve, labeled 'MDB" is illustrated in Figure 17

along with the true transmission loss and the original Born solution. As expected,
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o RELATIVE ERROR: BORN COEFFICIENT
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Figure 13. Relative error in the amplitude and real part of the Born mode
coefficient for a single mode in test case 1. The real part of the Born
coefficient is identically equal to the true coefficient.

o RELATIVE ERROR: RYTOV COEFFICIENT
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Figure 14. Relative error in the amplitude and real part of the Rytov mode
coefficient for a single mode in test case 1. The amplitude of the
Rytov coefficient is identically equal to the true coefficient.
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oRELATIVE ERROR: BORN COEFFICIENTS
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Figure 15. Relative error in the amplitude and real part of the Born mode
coefficient for the first seven modes in test case 1.

oRELATIVE ERROR: RYTOV COEFFICIENTS
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Figure 16. Relative error in the amplitude and real part of the Rytov mode
coefficient for the first seven modes in test case 1.
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Figure 17. True, Born and the reconstructed Born transmission loss curves
generated using the first seven modes in test case 1. The
reconstructed Born solution is calculated using the real part of the
projected mode coefficients.
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Figure 18. True, Rytov and the reconstructed Rytov transmission loss curves

generated using the flu-st seven modes in test case 1. The
reconstructed Rytov solution is calculated using the amplitude of the
projected mode coefficients.
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the growth of the Born solution with range has disappeared. To recalculate the

Rytov solution, we use the amplitude of the mode coefficients. The result,

illustrated in Figure 18, and labeled "MDR' exhibits little change from the original

Rytov solution.

In reviewing the results of this section, we conclude that although the

amplitude of the Born approximation is strongly affected by a shift in the sound

speed over the full waveguide, the Rytov approximation is insensitive to a

perturbation of this magnitude and extent. In the next section, we study several

two-layer waveguides in order to determine the magnitude and extent of

perturbations recoverable about a known background profile.

3.4 Two-Layer Waveguide

3.4.1 Derivation of the Solutions

The two-layer model used in this section is illustrated in Figure 19. The

sound speed in the upper layer is defined to be eI, while the sound speed in the

lower layer is defined to be co, to match the constant velocity case. The reference

wavenumbers are k, and k0, respectively. The depth of the layer is z1. The total

field for this geometry is
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P(k, r,O,z, z0)

- j A t, C0S.\,,(h-zo)cosA0,(h-z 1 ) sinA1nHI zt42 ( r) 0O< Z< Z
4 n sjnAjnzl

P(k, r,O,z,z0 )

- P~3A, cosA 4 ,(h-ze) cosA.n(h -z) H.7)(C,,r) Z, < z < h (38)

where An is given by

An = 2*Xl 3 *Xosin 2 A1 nZ,

* A~nCs _\(h-zl) (z, *Xn - sinAInz, coskinzi

+ \,.sin 2 ,\ 3 ZI ((h-zi),\*n + sin4.n(h-~z)cosA.(h-zi)) (39)

Again, the , are the horizontal eigenvalues for the total field, and are defined by

TWO-LAYER WAVEGU(DE GEOMETRY

.Z=O0
C1

zl

C,

z =h

Figure 19. Two-layer geometry used in test cases 2 and 3.
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n2=k2 n2\2 2=k2 n2-A2 Z<Z<

0n 1 In O<z<zl; 2 z on

The initial guess field, calculated using a constant velocity waveguide, with index

of refraction, n,, is given in Eq. (21). Note, that although the eigenvalues in the

lower layer in the total field are given in terms of ko, they are not identical with

those in the constant velocity case. The eigenvalues for the background profile are

still given by ,2 = k 2n 2 -A.

The Born solution is given by Eqs. (18) where the integration is now over the

support of the perturbation in depth, from 0 to zj. Because the background

eigenfunctions are not orthogonal over the perturbation extent in depth, Eq. (18.d)

is non-zero in this example. The depth integral can still be evaluated in this case.

The scattered Born solution for n = em is given by

Psn(k°,rr,zzo) 0 2 - 4Xi1n24z]

sinAnzsin\nz0 ij n r) (40.a)

For m the solution is

ik 2nIr ro)(mr

Psnm(ko,r,ro,z,z,,) - - h2 T

hO Z sinmnzsinCOn om nn 2 1
A~ncs,\nisin~nzI- AncosAmzisinAnzi

[ 2 n Am 2  (40.b)

Analogous to the constant velocity example, the Born solution is formed by
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substituting the scattered field solutions, P,, and Pnm, into Eqs. (18.a) and (18.c),

respectively; the Rytov solution is formed by substituting P,, and P ,"" into Eqs.

(19.a) and (19.b), respectively.

The errors in the two-layer waveguide solutions are discussed in the next

section. As in the previous example, the explicit error expressions will be derived

for a single mode only and these simple estimates will be compared to the results

from the multi-modal solutions.

3.4.2 Error Analysis

Following the analysis in section (3.2.2), we will derive the first order errors

for the case of a single mode. From Eq. (40.a), the first phase term in a two-layer

waveguide is

ik 2 r n . rZ 7 -. z o ff J2 ( ) f iz2 _ _ ~
,011(korO,z,zo) 0 ° sin(-)sin( ) H osin2( dz . (41)

2h2P h f 2h

Using P. from Eq. (21), the asymptotic form of the Hankel functions (Eq. (29)),

and evaluating the integral, we obtain

7rZI
ik 2 rn, z, sin( h---

11(ko,rO,z,zo)= 2s (42)

The gradient of 01, is just
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Irz1

V2(ko,rO,zzo)- 2 1 h r (43)

so, from Eq. (26), 021 simply becomes

ik 4 rn2 Z, s mn{ Z -----

021 (krOz,z°) -8n1 h .r (44)

From Eqs. (42) and (44), the first order relative Born error is given by

pp B) I sin ZI 2

P-P -0 - hk4rn k(4r2n4 z (5)

P 3 + 8Jj2 h r

and the first order relative Rytov error is
.7rZl 2

JR) ik4rn sin(--)P- =R 0] (46)

P 8 1 3 h

The behavior of the first order relative errors in range thus depends critically on

the width of the layer in depth. If z, is small compared to h, the sine can be

expanded around z1 /h = 0 and the errors now look like

p_pB) 0[- _ rn + kor (47)

for the Born error and



T-3790 53

p 0 J 6 (48)

for the Rytov error. Therefore, if the depth of the layer is small with respect to

the depth of the waveguide, the two-layer waveguide errors will be decreased from

the constant velocity errors by a factor (z 1/h) 6. From these results, it would be

expected that the errors in both solutions would decrease for any layer width less

than the full extent of the waveguide.

3.4.3 Modal Decomposition of the Born and Rytov Fields

In contrast with the constant velocity example, the true and background

mode functions are not identical in this case. The background eigenfunctions are

sines but the true mode functions are more complicated due to the presence of the

layer. Correspondingly, the expressions for the mode coefficients are more difficult

to derive and interpret.

From Eq. (E.8), the Born coefficient for the single mode in the two-layer

waveguide is

-k 2 o 4 r n , z l s in ( - )
CIB 2Asin(-!) 1 + 0- (49)

2h 2hel h 7

and from Eq. (E.10), the Rytov is
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?rZo ik2 rnl IzI sin(-! -)

CIR = 2 Asi(-n(-)exp [ 2h- 7r (50)

where A is given in Eq. (E.9). As in the constant velocity case, the Rytov mode

coefficient reduces to the Born if

ik2r 1  z sin(~~)1 «OrnZI h <<1
2h 1  h 7

and we truncate the series to first order.

Superficially, the modal decompositions seem to suggest the same type of

behavior as the first order errors. However, as will be seen in the next section, the

quantity A plays a significant role in determining the validity of the solutions.

3.5 Two-Layer Waveguide Examples

In this section, we discuss two velocity models; the first has a 100 m layer and

the second a 400 m layer. The parameters for the first model are given in Table 2.

The true and background profiles are illustrated in Figure 20 and the

transmission loss curves in Figure 21. Again, the guess overlays the true profile

almost exactly due to the smallness of the perturbation and also its minimal

extent.

We will first qualitatively predict the behavior of the Born and Rytov solutions

by studying the ratio I P/Po, vs. range in Figure 22. Both of the
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Table 2. Input Parameters: Test Case 2

INPUT PARAMETERS: TEST CASE 2

Range 1.-50. km
Source Depth 500. m

Receiver Depth 500. m
Source Frequency 25. Hz

Depth (m) Sound Speed (m/s)

True profile 0. 1500.
100. 1500.
100. 1501.

1500. 1501.

Guess profile 0. 1501.
1500. 1501.

Maximum Perturbation 1. m/s
Perturbation Width 100. m

ratios are less than 1/4 (except at the spikes) and they match in amplitude except

at the spikes which occur at the nulls in the amplitude of the incident field. This is

a case where we are in the range of validity of both solutions; the ratio of the

scattered to the incident field is small. Therefore, the solutions are expected to

generate similar results.

The Born and the true solution axe illustrated in Figure 23 and the Rytov and

the true solution are illustrated in Figure 24. As expected, the approximate
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SOUND SPEED vs. DEPTH
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Figure 20. The true and background sound speed profiles used in test case 2.
The background profile is constant over the entire waveguide at 1501
m/s. The true profile has a 100 meter layer in which the sound
speed is 1500 m/s. Below the layer, the true and background souna
speeds are identical.
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Figure 21. The true and background transmission loss curves for test case 2.
Because the perturbation is small (1 m/s) and extends only 100
meters in depth, the two curves are nearly identical.
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Figure 22. tatio of the scattered field to the incident field for the Born and

Rytov solutions in the two-layer waveguide of test case 2. Because

the trend of the ratio is less than 1/4 over the range of propagation,

both solutions are expected to yield accurate results.
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Figure 23. The true and Born transmission loss curves for test case 2. The Born
solution matches the true except at the nulls in the field.

. i i • i l z a



T-3790 58

TRANSMISSION LOSS vs. RANGE
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Figure 24. The true and Rytov transmission loss curves for test case 2. The
Rytov solution matches the true except at the nulls in the field.
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Figure 25. Relative error in the background, Born and Rytov transmission loss
curves for test case 2. The error in the the solutions is always less
than 10%.
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solutions overlay the true solution, except at the nulls, as is illustrated in Figure

25, by the relative errors.

At this point, we could further confirm the above results by proving the errors

to be minimal in the modal decomposition, but instead we will just conclude that

for a 1 m/s perturbation extending over 7% of the waveguide the Born and Rytov

are valid approximations over a range of 1 to 50 km.

The next case discussed is that of a layer extending over 28% (400 m) of the

waveguide. The input parameters for this example are given in Table 3.

The true and background profiles are illustrated in Figure 26 and the

transmission loss curves are illustrated in Figure 27. There is a visible difference

in the true and guess curves. From test case 1, we know that when the

perturbation is 1 m/s over the full waveguide, the transmission loss curves are

basically identical. The reason for the variation in test case 3 is due to the change

in the eigenfunctions. As the width of the layer increases to a certain depth, the

difference in the true and background mode functions increases correspondingly.

As the layer width extends to the full waveguide, the mode shapes return to those

found in a constant velocity environment.

Figure 28 demonstrates the change in the first mode when the layer width is

increased in 200 m increments. The first curve is the mode shape in a constant

velocity waveguide; the second curve is the mode shape when a 200 m layer is
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Table 3. Input Parameters: Test Case 3

INPUT PARAMETERS: TEST CASE 3

Range 1.-50. km
Source Depth 500. m

Receiver Depth 500. m
Source Frequency 25. Hz

Depth (in) Sound Speed (m/s)

True profile 0. 1500.
400. 1500.
400. 1501.

1500. 1501.

Guess profile 0. 1501.
1500. 1501.

Maximum Perturbation 1. m/s
Perturbation Width 400. m

present, the third curve is the mode shape when a 400 m layer is present and so

on.

To estimate the percentage change in the mode functions, we look at the

change in the mode coefficient over the waveguide as the layer width is

systematically increased. From Figure 29, we can estimate that a 400 meter layer

with a 1 m/s change in the sound speed, results in approximately a 14% change in

the mode coefficient as compared to the constant velocity case. It is evident, then,
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SOUND SP[ED vs DEPTH
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Figure 26. The true and background sound speed profiles used in test case 3.
The background profile is constant over the entire waveguide at 1501
rn/s. The true profile has a 400 meter layer in which the sound
speed is 1500 m/s. Below the layer, the true and background sound
speeds are identical.
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Figure 27. The true and background transmission loss curves for test case 3.
Although the perturbation is small (1 m/s), it extends over 28% of
the waveguide; therefore the guess transmission loss differs from the

r u e.
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MODE SHAPE vs. LAYER WIDTH
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Figure 28. Illustrated is the variation of the lowest order mode as a function of
layer depth. The curve on the far left represents the mode shape in
a constajit velocity waveguide and the second curve from the left is

the mode shape when a 200 rn layer is present, etc. The curve on

the far right is the shape of the lowest order mode when a 1.4 krn

layer is present. When the layer extends to 1.5 kin, the shape

returns to that in a constant velocity waveguide.
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that a small change in the sound speed over 28% of the waveguide causes a large

change in the value of the eigenfunctions and a corresponding change in the true

and background transmission loss curves.

To predict the behavior of the Born and Rytov solutions, we again study the

ratio of the scattered to the incident field for both approximations. From Figure

30 and a closeup in Figure 31, we r that the ratio in both cases has exceeded 1/4

by a range of approximately 13 km. Therefore, the Born solution is expected to

grow for ranges greater than 13 km. The behavior of the Rytov solution is difficult

to predict. Although the Rytov ratio also exceeds 1/4, we saw in the constant

velocity case that a large ratio did not affect the validity of the Rytov solution.

The Born and true transmission loss plots are illustrated in Figure 32 and the

Rytov and true in Figure 33. As expected, there is a slight growth in the Born

solution. The Rytov solution is somewhat more accurate (see the relative error

versus range in Figure 34), but again does not match the true solution; in addition,

a spike in the solution appears at about 5 km in the same location as one of the

spikes in the IPs/P , I of Figure 30.

We now see the effect that a 14% change in the true and background

eigenfunctions has on the accuracy of the Born and Rytov solutions. We also see

the failure of the error predictions to account for this type of change. Only the

factor V/' in the modal decompositions gives an indication that the solutions will
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TRANSMISSION LOSS vs. RANGE
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Figure 32. The true and Born transmission loss curves for test case 3. Although
the Born reconstructs the general shape of the curve, the growth of
the solution is apparent for ranges greater than -13 km,

TRANSMISSION LOSS vs. RANGE
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Figure 33. The true and Rytov transmission loss curves for test case 3.

Although the Rytov approximates the true solution better than the
Born, amplitude errors are apparent in both the nulls and peaks in
the field.
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RELATIVE ERROR vs. RANGE
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Figure 34. Relative error in the background, Born and Rytov transmission loss
curves for test case 3. Although the Rytov has the least error,
neither of the perturbative solutions were able to duplicate the true
transmission loss curve.

become invalid for layer widths less than the full waveguide.

Although difficult to analyze quantitatively, the significance of V can be

explained in terms of the constant velocity versus the two-layer solution. From

Eq. (21), we know the true and background solutions in a constant velocity

waveguide are constructed from an identical set of eigenfunctions; only the

eigenvalues differ. In the two-layer waveguide, the eigenfunctions of the true

solution vary (see Eq. (38)) depending on the receiver location in the waveguide

with respect to the layer. The former case has a simple normalization factor of

,(2/h), while from Eq. (39) the latter has the expression, vTA. From the modal
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decomposition of the Born and Rytov approximations (Appendix E), the term

occurs which contains, in addition to the factor v'A, other terms resulting from the

projection of the coefficients over a depth 0 to zi where the constant velocity

eigenfunctions are not orthogonal. Therefore, for the Born and Rytov solutions to

be valid representations of the true field, the term V/1 must give the right mode

shapes for the two-layer waveguide. This is impossible because V/A is constant for

a given layer depth and there still remains only a single set of eigenfunctions

predicting the true behavior over the entire waveguide. As a result, the Born and

Rytov solutions are unable to approximate the true solution if the true and guess

eigenfunctions differ by more than about 7%.

The results of this section will now be used to predict the behavior, in the

next chapter, of the perturbation expansions in a depth-dependent environment.
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4. DEPTH-DEPENDENT BACKGROUND TEST CASES

4.1 Introduction

Although a constant background solution provides useful error estimates, it is

not viable zeroth order solution in the deep ocean. For this reason, we now turn to

the distorted-wave perturbative approximations in which the background profile

depends on depth. Several depth-dependent velocity profiles are studied and the

results compared to those predicted from the constant velocity analysis. In all

cases, the trend of the sound speed profile is assumed to be known exactly; we look

at the behavior of the DWB and DWR solutions when a perturbation is placed

upon the background solution. Unlike the previous chapter, the results in this

chapter cannot be derived explicitly even for a single mode. The reason is that the

eigenfunctions are known only numerically. The DWB and DWR representations

of the total field are obtained from Eqs. (7) and (10), respectively.

The background profile in the first two examples is the weakly refractive

NORDA 2A test case (NORDA Parabolic Workshop 1984'. Two different size

perturbations (referred to as test cases 4 and 5) are placed on this profile and we

study the ability of the DW approximations to construct the true solution.

In the second set of examples, the profile is strongly refractive. Two different

test cases (referred to as test cases 6 and 7) are presented. The perturbation is the
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same is both cases but the source position and, therefore, the illumination in the

waveguide is varied.

4.2 NORDA 2A Examples

The parameters used in test case 4 are given in Table 4.

Table 4. Input Parameters: Test Case 4

INPUT PARAMETERS: TEST CASE 4

Range 1.-50. km
Source Depth 500. m

Receiver Depth 500. m
Source Frequency 25. Hz

Depth (m) Sound Speed (m/s)

True profile 0. 1500.0
300. 1506.0
400. 1507.5
500. 1510.0

1000. 1520.0
1500. 1563.0

Guess profile 0. 1500.0
1000. 1520.0
1500. 1563.0

Maximum Perturbation 0.5 m/s
Perturbation Width 200.0 m
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The NORDA 2A bilinear profile, illustrated in Figure 35, is the background

profile in this example. The true profile is constructed by placing a small

perturbation of limited extent on top of the guess. The profile perturbation is

illustrated in Figure 36; over the rest of the profile, the true and background sound

speed values are identical.

The transmission loss curves for the perturbed and unperturbed profiles are

illustrated in Figure 37. Even though the profile perturbation is only .5 m/s and

only extends over 13% of the waveguide, there are visible differences between the

two curves. However, from the results of section 3.5, we expect the DWB and

DWR to give a good approximation to the true solution.

SOUND SPEED vs. DEPTH

,5)0 1535 1570

o
Eo

Figure 35. NORDA 2A bilinear background profile used in test cases 4 and 5.
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SOUND SPEED vs. DEPTH
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Figure 36. The profile perturbation used in test case 4. The perturbation
extends from 300 to 500 m in depth and the maximum variation
from the background is .5 m/s. In the remainder of the waveguide,
the true sound speed matches the background.
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Figure 37. True and background transmission loss curves for test case 4.
Although the maximum difference in sound speed is only 0.5 m/s,
the perturbation extent is -13% of the waveguide; therefore the
curves differ as we propagate in range.
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The ratios of the scattered to the incident field amplitudes as a function of

range are illustrated in Figure 38. In order to clearly illustrate the trend of the

ratios, the same curves are shown in Figure 39 with an expanded vertical scale.

From Figure 38, we would predict the possibility of a large local error in the DWR

solution due to the spike near 40 km. Figure 39, on the other hand, gives an

indication of the global behavior of the solutions, particularly the DWB. Because

the trend of the ratio does not exceed 1/4, we would expect to obtain an accurate

solution from the DWB as well as the DWR. In fact, for this test case, the

expansions are approximately equal for ranges less than 50 km.

Figures 40 and 41 illustrate the transmission loss results from the DWB and

DWR solutions. The DWB exhibits minimal growth for ranges greater than about

40 km, while the DWR solution contains a spike at the null at the same range.

But as illustrated by the relative errors in Figure 42, both solutions give a good

approximation to the true transmission loss.
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Figure 40. True and DWB transmission loss curves for test case 4. As predicted,
the DWB is a good approximation to the true solution.
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Figure 41. True and DWR transmission loss curves for test case 4. As
predicted, the DWR is a good approximation to the true solution
except at the null near 40 km.
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Figure 42. Relative error in the background, Born and Rytov transmission loss
curves for test case 4.

In the next example, the size of the perturbation is increased to 1 m/s but the

extent of the perturbation remains the same. The input parameters for test case 5

are given in Table 5. The background solution is again the NORDA 2A profile.

The profile perturbation is illustrated in Figure 43. The transmission loss

curves for the true and background profiles are illustrated in Figure 44. As

expected, the difference in the true and guess curves is greater than in the previous

example. The guess and the true solutions differ both in magnitude and in the

position of the nulls.

The scattered to incident field ratios are illustrated in Figure 45 and a closeup
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Table 5. Input Parameters: Test Case 5

INPUT PARAMETERS: TEST CASE 5

Range 1.-50. km
Source Depth 500. m

Receiver Depth 500. m
Source Frequency 25. Hz

Depth (m) Sound Speed (m/s)

True profile 0. 1500.
300. 1506.
400. 1507.
500. 1510.

1000. 1520.
1500. 1563.

Guess profile 0. 1500.
1000. 1520.
1500. 1563.

Maximum Perturbation 1. m/s
Perturbation Width 200. m

of the same curves is illustrated in Figure 46. In this case, the magnitude of the

sPt.l*e (although not indicated by the plot scale) in Figure 45 near 40 km is over

twice that in the previous example and we would expect a larger local error. From

Figure 46, we would expect the DWB solution to fail at ranges greater than 25 km

when the ratio exceeds 1/4. Again, the transmission loss curves illustrated in
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SOUND SPEED vs. DEPTH
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Figure 43. Profile perturbation for test case 5. The maximum variation from
the background is now I m/s and the extent is -13% of the
waveguide.
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Figure 44. True and background transmission loss curves for test case 5. Note

the difference in the two curves as compared to Figure 37.
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Figure 45. Ratio of the scattered field to the incident field for the DWB and
DWR solutions for test case 5. As in Figure 38, the spike at -40 km
suggests the possibility of a local error the solutions.
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Figure 46. Expanded version of Figure 45. The DWB solution is expected to be
in error past 25 km when the ratio exceeds 1/4.
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Figures 47 and 48 verify the qualitative predictions. Although, the DWB solution

has shifted from the guess to indicate correctly the position of the nulls, the growth

in the solution becomes evident past 25 km. The DWR, on the other hand,

contains a spike at the null near 40 km and, in addition, incorrectly positions the

nulls. The amplitude behavior is, however, closer to the true solution than the

DWB. The relative error in the transmission loss of the guess, DWB and DWR

solutions is ilustrated in Figure 49.

This is exactly the behavior predicted from the two-layer case in section 3.5.

As the change in the true and background mode functions increases, the ability of

the DWB and DWR to construct the true solution decreases.

TRANSMISSION LOSS vs. RANGE
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Figure 47. True and DWB transmission loss curves for test case 5. Although
the shape of the curve is correct, the growth in the DWB solution for
ranges greater than 25 km is evident.
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Figure 48. True and DWR transmission loss curves for test case 5. The error in
the DWR solution near -40 km has increased (compare Figure 41)
and there are errors in the amplitude. In addition, the DWR fails to
correctly position the nulls of the solution.
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Figure 49. Relative error in the background, DWB and DWR transmission loss
curves for test case 5. The vertical scale has been expanded to
differentiate the errors.
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We now turn to some deep ocean examples in which the sound energy

propagates mainly through refraction.

4.3 SOFAR Channel Examples

As discussed in Chapter 1, the velocity structure of the SOFAR channel is

characterized by a sound speed minimum (known as the channel axis) at about "

km with the sound speed increasing both above and below the axis. In this section,

we study the behavior of the DWB and DWR solutions when the perturbations are

placed about a bilinear background sound speed profile. In particular, we

investigate the effect of varying the source position with respect to the channel

axis.

The parameters for the first example in this section, test case 6, are given in

Table 6. The source is placed at 500 m, while the channel axis is at 1 km.

Because the profile is strongly refractive, the entire waveguide is not irsoniicd.

Instead the energy in the waveguide travels in a relatively narrow beam.

The background profile is illustrated in Figure 50 and the perturbatiorn about

the background is illustrated in Figure 51. The true and background transmissions

loss curves, illustrated in Figure 52, give an indication of the insonified and

shadow zones in the waveguide. Near the source the energy is a maximum, but as

we move out in range to approximately 13 km there is a broad low energy region
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Table 6. Input Parameters: Test Case 6

INPUT PARAMETERS: TEST CASE 6

I? ange 1.-50. km
Source Depth 500. m

Receiver Depth 500. m
Source Frequency 25. Hz

Depth (m) Sound Speed (m/s)

True profile 0. 1520.

700. 1478.
800. 1473.
900. 1466.

1000. 1460.
4000. 1525.

Guess profitc 0. 1520.
1000. 1460.
4000. 1525.

Maximums: Perturbation 1. m/s
Perturbttion Width 200. m

which extends to ipproximately 30 km. Past 30 kin, the region around the

receiver depth is a.Lin illuminated.

The ratios of he scattered to incident field, illustrated in Figure 53 with an

closeup in Figure 1, indicate that the maximum error is expected to occur in the

shadow zone; in p). ticular, in the transition from low to high energy near a range
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Figure 50. Background profile used in test cases 6 and 7.
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Figure 51. Profile perturbation for test cases 6 and 7. The 1.,aximum variation

from the background is 1 m/s and the extent is -5% of the
waveguide.
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Figure 52. True and background transmission loss curves for test case 6. Note
the broad region of low intensity.

of 30 km. However, except for isolated spikes the ratio is always less than 1/4 and,

therefore the perturbative so'Luions are expected to yield accurate results.

The DWB and DWR transmission loss curves are illustrated in Figures 55 and

56. The vertical scales on both plots have been expanded to include the spike

occurring near 29 kin. The DWB and DWR solutions are nearly identical as

predicted by the small I PI/P, I ratios. Both solutions match the true solution in

the region~s of high intensity, but fail to give the correct values in the shadow zone

and in fact exhibit a greater error than the guess near the deep null. A plot of the

relative errors (Figure 57/) in the two solutions substantiates this conclusion.

Although qualitative predictions suggest that both solutions are within their range
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Figure 53. Ratio of the scattered field to the incident field for the DWB and
DWR solutions for test case 6.

Ps /Po~ :s. RANGE

z

z

0W

<ow

I- DWR

C-)A

1.0 25.5 50.0

RANGE (km)

Figure 54. Expanded version of Figure 53. Note the maximum error occurs in
the region of low intensity.
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TRANSMISSION LOSS vs. RANGE
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Figure 5. True and DWB transmission loss curves for test case 6. The vertical
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RELATIVE ERROR vs. RANGE
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Figure 57. Relative error in the background, DWB and DWR transmission loss

curves for test case 6.

of validity, this test case indicates that the DWB and DWR are invalid over broad

regions of low intensity as well as at the isolated nulls in the field.

In the last e-ample, the parameters are the same as in test case 6 except the

source and receiver are placed on the channel axis at I kmn. The true and guess

transmission loss plots are illustrated in Figure 58. The shadow zone has

disappeared as expected and the background solution nearly overlays the true.

As illustrated in Figure 59, the DWB and DWR scattered to incident fBid

ratios are nearly identical. A closeup of the plots in Figure 60 demonstrates the

ratio of the trends to be less than 1/4. Although the spike at approximately 42 km
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Figure 58. True and background transmission loss curves for test case 7.
Because the source is placed on the channel axis, the shadow zone
has disappeared.

indicates the possibidity of a local error, the DWB and DWR solutions are

predicted to give an accurate representation of the true transmission loss. This is

confirmed by the transmission loss curves in Figures 61 and 62, and the relative

errors in Figure 63.

The results of this chapter verify that the behavior of the DWB and DWR

solutions can be qualitatively predicted from the quantitative single mode results of

chapter 3. If the eigenfunctions do not change by more than approximately 7%

and the receiver is well-illuminated, the perturbative solutions will give an accurate

representation of the true field in the ocean waveguide to a range of 50 km.
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Figure 59. Ratio of the scattered field to the incident field for the DWB and
DWR solutions for test case 7.
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Figure 60. Expanded version of Figure 59. The ratio is always less than 1/4 and
the DWB and DWR are expected to give accurate results.
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Figure 61. True and DWB transmission loss curves for test case 7. Because the
waveguide is well-illuminated and the perturbation is small, the
DWB gives a good approximation to the true solution.
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Figure 62. True and DWR transmission loss curves for test case 7. Because the
waveguide is well-illuminated and the perturbation is small, the
DWR gives a good approximation to the true solution.
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Figure 63. Relative error in the background, DWB and DWR transmission lass
curves for test case 7.
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5. INVERSION RESULTS

5.1 Introduction

Inverting for a depth-dependent perturbation in the ocean waveguide differs

from the seismic case in which the location of and the impedance contrast across

sharp boundaries in a layered earth is the goal (Cohen and Bleistein 1977; Raz

1981; Beydoun and Tarantola 1988). It also differs from the problem of object

scattering for which the definition of the boundaries of a compact object placed in

a constant background are desired (Mueller, Kaveh and Wade 1979; Slaney, Kak

and Larsen 1984; Zapalowski, Leeman and Fiddy 1985).

In the ocean, the perturbations about the inhomogeneous background are

smoothly varying functions of depth and extend over the entire range of

propagation. The field structure in the deep ocean waveguidc is characterized by

multiply refracted energy as opposed to reflected energy. Therefore, if we think of

the propagation paths in terms of rays, the raypaths can cross through a

perturbation many times before reaching the receiver. Although in the seismic

case, multiples (energy that has been reflected more than once from an acoustic

boundary) are inherent in the data, they are removed by processing in order to

display the primary reflection; energy that has traveled from the source to the

layer back to the receiver directly. So while the multiply reflected energy is
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removed in seismic processing, the multiply refracted energy in the ocean is the

primary arrival.

The applicability of Fourier inversion techniques for recovering depth-

dependent perturbations in the ocean waveguide is investigated in this chapter.

Our goal is to relate the perturbation as a function of depth and the scattered field

as a function of frequency as a Fourier transform pair within a linear

transformation. As will be shown, the DWR and DWB scattered field data are

constructed differently, but in both cases the transformation kernel is obtained

from the DWB representation. Therefore, we concentrate on the attributes of the

DWB kernel; the behavior of the amplitude and phase derivative with respect to

depth as a function of depth, range and frequency. Certain criteria must be met in

order for the transform relation to be valid; the amplitude must be a slowly

varying function of frequency and the phase must be monotonic in depth and its

frequency dependence known.

In the following sections, we discuss the inversion formalism, the attributes of

the DWB kernel and the effect that band-limiting and phase averaging have on the

reconstruction of a perturbation.

5.2 The Inversion Algorithm

The DWB scattered field representation is given in Eqs. (18.b) and (18.d).
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Because the solution is given as a sum over all modes, explicit expressions for the

amplitude and phase are not available. If, however, we perform the summation, we

can write the scattered field, P,, as

P8(ko,r, O,z,zo) = B(ko,r,z, z,z')e O(krzz°z')nl1(z') dz' , (53)

Z!

where z, and z 2 define the limits of the perturbation in depth. The amplitude of

the modal sum is defined as B, and the phase as 8. Be' is defined as the

transformation kernel relating the scattered field to the profile perturbation.

To construct the transform pair

FT
P, (ko) <=> n 1 (O(z')), (54)

we generate the scattered data as a function of wavenumber using either DWB or

DWR approximations. We then assume that the amplitude wavenumber

dependence is known and can be absorbed into the scattered data and replace

B(ko,r,z,zo,z') with its wavenumber independent equivalent, B(r,z,zOz'); the

modified scattered field is written as /5. Next, we multiply both sides of Eq. (53)

by the phase function, e- ;0(kr,zz ',), and integrate over wavenumber to obtain

00

f P. (ko I r, 0, zIZ,)) e - 9krz ~z)dko
-00

Z 2  00 _

=f n I (z')B (r, z, zo, z) f Cif(k., r zz.,z') -M kZIZ)dodz(5

ZI -00

Assuming that the phase, 0, depends linearly on wavenumber, 0 = ko0 where 0 is
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independent of ko (or if not a transformation has been made to account for the

dependence), and the phase is monotonic in z', then the ko-space integral is

identically equal to a delta function. The argument of the S-function is Ih,

difference of our k.-independent phase terms, i(z') and 0(7'). Because the delta

function is in terms of the phase instead of depth, we make a transformation

obtaining the integrand as a function of the phase. As a result, the transform

variables are k, and 0(z'). Therefore, we write Eq. (55) as002n [z)BO~')2r (' - ](
f P0((k.)ei)C(z)dko fd/d z )  ( do, (56)00e I d ldz "1I=Z

where dO/dz ' is the Jacobian of the transformation. For simplicity, we have

c'xcludcd the parameter dependence in the expression; we retain only the transform

variables 0(z °) and ko explicitly. Evaluation of the phase integral gives

I (0(z)) = I/ 'L= f P,(k,)C-ik(z)dko (57)n I(((z()) = zdd  = .

Thus, we have obtained a linear transform relation between the scattered field data

as a function of wavenumber and the perturbation as a function of the phase.

To form the DWB scattered field, we generate the true, P, and background,

Po, field representations as a function of wavenumber and subtract thereby

obtaining
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P(B)(ko) = P(ko) - Po(ko). (58)

The DWR scattered field is

P(k0 )
P(R)(k°) = PO(k.) In P,(ko) (59)

The DWB and DWR representations of the scattered field will closely approximate

the data generated from Eq. (53) if the solutions are within their range of validity

and the inversion criteria discussed above are satisfied. In the next section, we

investigate the behavior of the amplitude and the phase derivative of the DWB

kernel for two sound speed profiles. We also outline the processing steps necessary

to formulate the inversion and the effects that these processing steps have on the

output of the Fourier inversion.

5.3 Investigation of the DWB kernel

The first case investigated is the NORDA 2A profile whose parameters where

listed previously in Table 1. A pixel map of the transmission loss over a range of 1

to 50 km is illustrated in Figure 64. The source frequency is 50 Hz. Because the

sound speed minimum is located at the ocean surface, there are multiple surface

reflections interfering with the refracted energy in the waveguide.

As indicated in section 5.1, it is necessary to determine the behavior of the

amplitude and phase derivative of the DWB kernel as a function of wavenumber.
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Figure 65 illustrates the amplitude of the DWB kernel while Figure 66 illustrates

the phase derivative arising from the transformation from z' to O(z).

Comparing Figures 64 and 65, we see that they contain similar but shifted

features. The shift is most apparent in the location of the lower turning points of

the field. The range dependence of the background field is

~2) (er) = J,(er) - iY.(er) while the range dependence of the scattered field is

lJ42)(r) = J,(er)- iYL(er). In the far field, J1 (er)'-Yo(er) and Jo(er) and

Yj (Cr) are 7r out of phase (Abramowitz and Stegun 1984).

The structure in Figure 66 is essentially the instantaneous vertical

wavenumber, k,, analogous to the instantaneous frequency in complex seismic trace

analysis (Taner, Koehler and Sheriff 1979). The yellows and reds denote positive

values, black is the zero transition and the blues are negative values. The

association of the phase derivative with k, is verified by the zero transition regions

in Figures 65 and 66. For instance, at the deep turning points of the amplitude,

the phase derivative is zero; i.e. the propagation is horizontal. Many other zero

crossings are evident in the figure and each corresponds to k, = 0.

Recalling that the phase needs to be monotonic for a valid inverse, we see that

at least globally this criterion cannot be met. However, if we can find a region

where the phase is locally monotonic, and the rest of the inversion criteria are met,

then we can attempt a perturbation reconstruction over a limited range in depth.
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Figure 64. Tranismiission loss for the NORDA 2A profile illustrated in Figure 35.
The soiirce is placed at a depth of .5 km and the source frequency is
50 1lIz.
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Figure 66. Derivative of the phase with respect to depth for the NORDA 2A
profile. The source is placed at a depth of .5 km and the source
frequency is 50 IN. The complicated pattern of zero crossings is due
to the iterfereince of reflected and refracted energy.
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The next step is to check the frequency dependence of the amplitude and phase

derivative or equivalently, the phase, at a fixed range (the phase is constructed

from the phase derivative to avoid phase unwrapping). The amplitude was found

to have a 1/k. approximate dependence and so are multiplied by k,. The phase

derivative, on the other hand, goes approximately like ko, and accordingly, is

divided by k.. The resultant amplitude and phase derivative curves are illustrated

in Figures 67 and 68, respectively, for 10 frequency values ranging from 5 to 50 Hz.

Although the curves in each plot are of the same order of magnitude, tly are not

identical. Therefore, only frequency-averaged versions of these functions are

available for use in the inversion algorithm. In addition, because the phase is

numerically constructed from its derivative, the spikes in the latter must be

selectively removed using a local mean amplitude comparison in order for the

algorithm to be stable. We also note that the zero crossings in Figure 68 occur at

different depths for different frequencies; therefore, for this profile, the phase

monotinicity is a function of frequency. The averaged (over depth and frequency)

curves for the amplitude and phase derivative are illustrated in Figures 69 and 70,

respectively. Note that it is these averaged functions that will be used in an

inversion.

Earlier in the discussion, we postulated that a reconstruction could be

attempted over a compact region in depth if the phase were locally monotonic.

However, we first need to consider how band-limiting, in particular the absence of
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AMPLITUDE vs. DEPTH
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Figure 67. Amplitude of DWB kernel for 10 source frequencies generated using
the NORDA 2A profile. The source depth is .5 km and the range is
30 km.
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Figure 68. Derivative of the phase with respect to depth for 10 source
frequencies generated using the NORDA 2A profile. The source
depth is .5 km and the range is 30 km.
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AVERAGE AMPLITUDE vs. DEPTH
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Figure 69. Frequency-averaged amplitude of DWB kernel generated using the
NORDA 2A profile. The source depth is .5 km and the range is 30
km.
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zero frequency, affects the recovery of a given perturbation. Also of importance in

the reconstruction process is the effect of using numerically constructed averaged

quantities. For these reasons, we next investigate the effects of phase averaging

and band-limiting on the Fourier reconstruction of two different perturbations.

We first look at our ability to reconstruct a simple triangular perturbation

(see Figure 71, the true perturbation has a maximum value of 1 at 100 m). The

perturbation is centered at 100 m and its extent is 200 meters. The entire region

over which the inversion is performed is assumed to be 700 meters. Because the

perturbation is a real positive function, we know from Fourier analysis that zero

frequency is required to fully reconstruct the amplitude of the perturbation.

However, very low frequencies are unavailable in an actual inversion, and so first

we illustrate the effect that systematically removing the lowest frequency values

has on the perturbation recovery. If the sampling interval is taken to be .684 m

(1024 samples), then the sampling interval in frequency (where co is 1500 m/s) is

-1.0 s - 1 . If we generate the Fourier transform of the triangular function, zero the

low frequency components of the transform one sample at a time, and then inverse

transform, we obtain the curves in Figure 71. The actual function has a maximum

amplitude of 1. Successively smaller amplitudes represent the reconstruction with

one less frequency component. As the near-zero components are discarded the

maximum amplitude of the function decreases correspondingly and the function is

shifted as a result of the removal of the zero frequency component.
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LOW-CUT FILTERED PERTURBATION
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Figure 71. Effect of low-cut filtering on the Fourier reconstruction of a positive
triangular perturbation.

We next investigate the effect of numerically constructing the phase from the

phase derivative. The first step is to obtain the transform of the triangular

perturbation. Next, we calculate the derivative of the phase of the transform

kernel and from this function we integrate to find the unwrapped phase. If the

phase derivative is a smooth function of depth, then the previous step is stable.

However, as discussed above, the phase derivative (e.g. Figure 68) has large local

spikes and must be smoothed before calculation of the phase and this smoothing

process has a significant effect on the Fourier inversion.

Illustrated in Figure 72, are the perturbation reconstructions obtained from

averaging over 0 to 250 points in 50 m increments. It is important to note that
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Figure 72. Effect of phase-averaging on the Fourier reconstruction of a positive

triangular perturbation.
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these curves are the real part of the function obtained from the inverse transform.

The averaging process has destroyed the original symmetry of the transform; the

spectrum no longer corresponds to that of a real function. Although in the actual

inversion process we are not averaging the phase of the data (as done here), but

instead, averaging the Fourier phase, the effect is the same; components needed to

reconstruct the perturbation are in error.

We now investigate the effects that band-limiting and phase averaging have

on the recovery -f a second perturbation. The perturbation has the same extent

and amplitude of the previous example, but now is placed evenly about zero. The

effect of band-limiting is illustrated in Figure 73. Because the DC component is

LOW-CUT FILTERED PERTURBATION
Co

o f

4AJ
0

IAJ

Uj

0.00 0.35 0.70

DEPTH (kcm)

Figure 73. Effect of low-cut filtering on the Fou. ier reconstruction of a
symmetric (about zero) perturbation.
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Figure 74. Effect of phase-averaging on the Fourier reconstruction of a
symmetric perturbation.
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identically zero, elimination of the near-zero components (0-4 Hz) results in only

half the amplitude loss as compared to Figure 71.

The results obtained from averaging the phase of the spectrum arc illustrated

in Figure 74. The reconstructions are more consistent as compared to Figure 72;

the structure is well-identified for any average filter length.

From the examples discussed above, it appears that the second type of

perturbation would be a good choice to try in the inversion algorithm. However,

no consistent reconstructions could be obtained for either type of perturbation in

the NORDA 2A environment. In fact, although we will briefly discuss the deep

ocean examples (test cases 6 and 7, chapter 4), no reconstructions were obtained

for any profiles studied.

Several explanations for the failure of the algorithm can be offered. First is

the behavior of the amplitude and phase with frequency. Because these functions

vary with frequency, only averages are available for use in the reconstruction. As

previously discussed, the effect of averaging, in particular, phase averaging has a

strong efect on the , .r, t of the Fourier transform. Second, the phase is not

monotonic; the transformation from depth to phase is not one-to-one. Therefore,

there exists a neighborhood (of unknown extent) about the stationary phase point

in which the inversion formulation is invalid.

Although we are unable to recover a perturbation using this inversion
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technique, we nonetheless investigate the behavior of the Born kernel for the deep

ocean profiles (examples 6 and 7, chapter 4) in order to gain additional insight.

Illustrated in Figures 75, 76 and 77 are the transmission loss of the field and the

amplitude and phase derivative of the Born kernel, respectively, constructed using

the parameters of test case 6. Because this is a strongly refractive profile, the

structure in the three figures is sharply defined. The energy is almost purely

refractive. The amplitude and phase derivative curves for 10 frequencies (5 to 50

Hz) at a range of 30 krn are illustrated in Figures 78 and 79 with their respective

averages in Figures 80 and 81. As compared to the Figures 67 and 68, these curves

are nearly identical, except at the locaiized spikes and low frequencies. In this

case, the stationary points consistently occur within a small region at a depth of 2

km. However, at a range of 30 km and a receiver depth of 500 m, we are in a

shadow zone. From the modeling results of chapter 4, we recall that the DWB and

DWR solutions were unable to give a valid approximation to the true solution.

Unfortunately, if we move farther out in range the amplitude and phase derivative

behavior again varies with wavenumber. Therefore, although the DWB kernel is

stable (in the sense that the Fourier inversion is valid) over the upper region of the

waveguide, the lack of field structure in this region makes a perturbation

reconstruction impossible.

In the last example, we investigate the DWB kernel when the waveguide is

strongly refractive and well-illuminated; test case 7. The transmission loss and the



T-379011

Figure 75. Transmission loss c:alcu~lated us;iig Lhe profile and sou rce- receiver
geometry of test case 6. The source frequenicy is 50 Hiz.
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-X-
Qi

Figure 76. Amplitude of the DWB kernel calculated using the profile and
source-receiver geometry of test case, 6. Note the trapping of energy
in narrow hbands due to the so)urce placement.
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Figure 77. Derivative of the phase with respect to depth calculated using the
profile and source-receiver geometry of test case 6. As compared to
Figure 66, there are broad regions in depth for which the phase is
monotonic.
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Figure 78. Amplitude of DWB kernel for 10 source frequencies generated using

the profile and source-receiver geometry of test case 6. The range is

30 kin.
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Figure 79. Derivative of the phase with respect to depth for 10 source

frequencies generated using the profile and source-receiver geometry

of test case 6. The range is 30 km.
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AVERAGE AMPLITUDE vs. DEPTH
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Figure 80. Frequency-averaged amplitude of DWB kernel generated using the
profile and source-receiver geometry of test case 6. The range is 30
km.
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Figure 81. Frequency and depth-averaged derivative of the phase with respect
to depth generated using the profile and source-receiver geometry of
test case 6. The range is 30 km.
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amplitude and phase derivative of the DWB kernel are illustrated in Figures 82, 83

and 84. Although the structure is regular as compared to the NORDA 2A test

case, we see from the phase derivative that there are many zero crossings over the

depth of the waveguide. As illustrated by the amplitude and phase derivative

curves versus wavenumber, (Figures 85 and 86) and their averages (Figures 87 and

88), the behavior of the DWB kernel varies with wavenumber. In Figure 88, we

observe two stationary points and, in addition, a higher order stationary point in

the vicinity of the source. Therefore, for this source geometry, we have a well-

illuminated waveguide, but the points of stationarity render the inversion algorithm

invalid.

5.4 Summary of the Inverse Problem

The refractive nature of propagation in the ocean waveguide makes a wide-

band Fourier-like inversion for a single source-receiver, invalid. In regions where

the waveguide is well-illuminated, there are multiple turning points (where the

Jacobian goes through a zero) and the transformation relating the scattered field

data and a depth-dependent perturbation is no longer I to 1. If the energy is

trapped within a narrow beam due to source placement, then the regions in which

the phase is monotonic coincide with shadow zones in the waveguide; in these

regions, the DWB and DWR approximations yield inaccurate results.
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..

Figure 82. Transmission loss calculated using the profile and source-receiver
geometry of test case 7. The source frequency is 50 Hz.
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Ib

Figure 83. Amplitude of the DWB kernel calculated using the profile and
source-receiver geometry of test case 7. Note the trapping of energy
near the channel axis.
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°S

Figure 84. Derivative of the phase with respect to depth calculated using the

profile and source-receiver geometry of test case 7. As in Figure 66,
there are many zero crossings. In this case the turning points are
due to refraction within the wavcguidh.
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Figure 85. Amplitude of DWB kernel for 10 source frequencies generated using
the profile and source-receiver geometry of test case 7. The range is
30 km.
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Figure 86. Derivative of the phase with respect to depth for 10 source
frequencies generated usinr, the profile and source-receiver geometry
of test case 7. The range s 30 km.
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Figure 87. Frequency-averaged amplitude of DWB kernel generated using the
profile and source-receiver geometry of test case 7. The range is 30
km.

PHASE DERIVATIVE vs. DEPTH

0.

0.0 2.0 4.0

DEPTH (kin)

Figure 88. Frequency and depth-averaged derivative of the phase with respect
to depth generated using the profile and source-receiver geometry or"
test case 7. The range is 30 km.
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As an alternative to a wavenumber inversion, we could formulate the inverse

given multiple receiver configurations, either horizontal or vertical arrays, for a

single frequency source. For example, a closely-spaced horizontal array would

permit the tracking of stationary points in the phase of the kernel, (which are

related to the eigenray arrivals) and therefore, differentiation of the arrivals.

Recovery of a profile perturbation could be attempted by first evaluating the depth

integral at all receiver ranges using the method of stationary phase. If we then

assume that the magnitude of the perturbation at the stationary point for a given

depth is the same at all receivers, the perturbation at each depth can be recovered

using a matrix inversion.
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CONCLUSIONS

The Born and Rytov approximations to the transmitted field, in which the

direction of propagation is in range and the perturbation is in depth, behave in

much the same way as the solutions in a layered earth. In a constant velocity

earth, the depth-dependent wave functions are have the same functional form for

the true and background fields; therefore, the errors are simple to derive and

interpret. In fact, the Born and Rytov mode coefficients can be projected from the

solutions to give the exact error in the approximations for a single mode. As

verified by the constant velocity example, the validity of the Born solution depends

on the size and extent of the perturbation; the scattered field must be less than the

incident field in order to obtain an accurate approximation. The Rytov solution,

however, in insensitive to the distance traveled in the perturbed medium. The

accuracy of the approximation instead depends on the gradient of the ratio of the

scattered to incident fields.

The behavior of the solutions in a layered waveguide is a bit more difficult to

quantize. The true and background eigenfunctions no longer have the same form

and the projected mode coefficients are difficult to interpret. However, through

numerical examples, we found the mode functions can differ by up to 7%; at this

limit, accurate representations of the true field will be obtained for ranges less than
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25 km.

The information obtained from the two-layer test cases is used to estimate the

magnitude and extent of perturbations permissible when the background sound

speed depends on depth. The accuracy of the approximations depends both on the

profile and the source-receiver configuration. If the receiver is in a shadow zone,

the correct field structure is not well approximated. In general, however, if the

receiver is well- illuminated, the behavior of the DWB and DWR fields (for a

depth-dependent perturbation) follows that predicted in the two layer case.

Accordingly, the extent to which the background profile can deviate from the true

profile in an inhomogeneous environment can be estimated; therefore indicating the

size and extent of profile perturbatioi 0rhich can be recovered in an inverse

problem using either the DWB and DWR approximations to the scattered field.

The inverse algorithm was formulated as a Fourier inversion assuming the

phase ' the DWB kernel and the wavenumber to be Fourier transform variables.

Because the kernel is written as a modal sum, no explicit expressions for the

amplitude and phase were available; therefore, the analysis was completely

numerical. Although the gross wavenumber dependence was determined and

numerically removed from the amplitude and phase, the functions were necessarily

averaged over wavenumber to smooth any local dependence. When the averaging

process is applied to the phase, the information content of the Fourier constituents
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is distorted; in effect the phase function is no longer contins the correct information

on the perturbation. In addition, the phase was not monotonic in regions in which

the waveguide was well-illuminated and so in these regions the inverse algorithm I

was no longer valid. As a result of these limitations (plus band-limiting), no

perturbations were recovered using either the DWB or DWR scattered field.

Therefore, although the inversion could be posed using other parameter

configurations, we conclude that for a single source-receiver geometry, a wide-band

Fourier inversion is not a valid formulation for recovering depth-dependent

perturbation in the deep-ocean waveguide.
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APPENDIX A:

Derivation of the Normal Mode Representation of the Field

The integral representation of the sound field of a point source contains the

normal modes (discrete spectrum) as well as the continuous spectrum. The

discrete spectrum constitutes the main contribution since the normal modes are

only weakly attenuated, whereas the continuous spectrum rapidly attenuates with

range. If we are in the far field of the source, then, to a good approximation, only

the normal modes contribute significantly to the pressure field. In this appendix,

the modal field representation is derived for a specific set of boundary conditions.

We begin with the inhomogeneous Helmholtz equation

v2 + kono) PoCko,r ro,z, zo) = - r-rA)6(-) 1)
27r

in cylindrical coordinates for an arbitrary source point, (ro,z,). The boundary

conditions are chosen to be

P0(k,r zzo) I Z = 01 P-~-P(ko, roo, , ) I z=h = 0

where h is the width of the ocean waveguide.

The homogeneous form of Eq. (A.1) is separable and the pressure field of a

wave outgoing from a source located at ro can be written as
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Po(ko,rjrZzo) = r > ro (A.2.a)

Po(kO,rroz,zO) = r < ro  (A.2.b)

The time dependence was chosen to be exp(iwt). In the first equation Hop2) (r)

constitutes a right-traveling wave. The second equation contains both right and

left-traveling components, but at large r the right-going wave is only seen in its

effect due to the coupling with Eq. (A.2.a). The range-dependent solution, which I

will call G( r I ero) for simplicity, is derived in Appendix B. The depth dependent

solution, O(z,e), satisfies

dz2 + (kon 0 (z) e) O(z,e) = 0 (A.3)

with boundary conditions

dz =0

Z=O z=h

This system is solvable only for specific values of the separation parameter, .

Chosing two linearly independent solutions of Eq. (A.3) to be k1(z,e) and

02 (z, e) then the depth dependent solution is written

=(Z CI I(Z, ) +4 C 2 0 2 (z,), (A.4)

where 01 and C2 are constants. Eq. (A.4) and the boundary conditions will give

the relationship between the coefficients for all n
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CI = -C 2

and also the characteristic equation for the eigenvalues,

1i(0,en) (h, en) - 0 2 (0,e) i(h, e) = 0. (A.5)

The solution of the inhomogeneous equation can now be represented as the sum of

normal modes

Po ( o,r,,'o, z, o) = C(zo, en) G(G ," I en ro) 0(z, W A.6P 0 (kT,7,z~z) ~(A.6)

n

The excitation coefficients, C(zo,en), are found by substituting Eq. (A.6) into the

inhomogeneous equation, (A.1).

E 2 [C(zo,en)G(nrlenro) O(zen)] + C(Zo, en) G (nr ro)0(Z,

92 r + 9r

az 2 [ C zoen)G (e r n r , ( r -re ) , 0 -0
6(r - ro)6(z -z) (A.7)

27rr

Using the equation for G(enr Ienro),

+ _ + n G nrenro)= (r-r , (A.8)
d72  r dr irr

Eq. (A.7) reduces to

F C(zo, e) O(z, e) = 46( Zo). (A.9)
4

n
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Multiplying by O(Z, integrating over the depth of the waveguide and using

orthogonality of the normal modes gives

, 4 h (A.10)

fo0 O(.)O(.,en) dZ

Normalizing the O's in such a way that the integral is equal to 1, C(zo,en) is equal

to -L(Zo,en), and the final solution is written as
4

PO (k0 ,r, ro,z, zo) G G( n r ro) 0 (z, nt(Zo,~n (A. 11)
n

Substituting the G(r I Gro) from Appendix B, the incident field modal solution

is

Po(k0,rlr 0,z~zo) = (erJoenoO(,3 P~on r>ro
n

Po(kor,r,zzO) = 7 o H)(C o)Jo(en,)¢(zn)¢(zo,en) r<ro. (A.12)
n
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APPENDIX B:

Derivation of the Range Dependent Solution

Bessel's equation for an arbitrary source point, r = ro , is

+ -Ld + 2  =r ro) 2i r-ro (B).
dr2  r dr rr(B.1)

The zero order forward Hankel transform is defined to be

O

(kr) = f g(r)Jo(k r) rdr
0

and the corresponding inverse transform is

g(r) = j (k,)o(kr r) k dkr
0

where kr is the radial wavenumber. Applying a Hankel transform to Eq. (B.1),

integrating by parts twice and using the relationships between the zeroth and first

order Bessel functions results in the transformed Green's function

=2i Jo~k, ro)
7 k2 2 (B.2)

r' -

Inverse transforming gives

G ( r I~ e. = - f 0T0J4 )Jr kr dk, (B.3)

Using the relationship between Bessel and Hankel functions
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Jo(krro)Jo(krr) = "[HIjo)(krro) + II$,)(kTTo)] IH')(krr) + Ho)(kr r)] (B.4)
4

to rewrite the integrand and the relation

ko)(-krr) - -H 2 )(krr) (B.5)

to reduce the four integrals to two, gives

f r ° Hco')(krr )H o)(krr)krdkr
GerI enro) 27=

(00 O.')krI- en'r)kdk

27r k2 - en (B.6)

If we now change the integration along the real line into a contour integral by

making k, complex, the evaluation of these integrals is accomplished using the

residue theorem. If the time dependence is chosen to be ei t , then the form of an

outgoing wave is e- ' r . Using the asymptotic form of the Hankel functions, these

integrals can be rewritten as

( r )- -1(rro)-1/2 f dkr

e ik,(r-ro)
(ro)12 Cdk, . (B.7)

The asymptotic forms are used simply to make the pole evaluation more

transparent. In the first integral of Eq. (B.7), r + r, is always greater than 0;

therefore, if kr is positive imaginary, we have convergence in the upper half plane.
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We have two poles at which to evaluate the integrand. Evaluation at the positive

pole results in an incoming wave and so this solution is discarded. Evaluation at

the negative pole gives the outgoing wave contribution. Asymptotically, the first

integral becomes

: (rro ) -1/2 -ie.(r + r.) (B.8)

and therefore, the solution is

1 I(2) (~)1(2)(CT.(B)2 0 n r 0 (, r)(B.9)

The phase of the second integral looks like kr(r - ro) and must be evaluated

depending on whether r is greater than or less than ro. For r>ro, we have

convergence in the upper half plane. Evaluation at k, = - n gives the outgoing

wave and the solution is

1 i( 1) (CGr)( 2 ) ( nr). (B.10)
2

For r<ro, we have convergence in the lower half plane. Evaluation at the positive

pole gives the outgoing wave solution

21AA 0( )(nro) MO1) r). (B.11)

Summing Eqs. (B.9) and (B.10) and using Eq. (B.4), we obtain the solution for r

greater ro.
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G(C, rI enro) - Jo(enro) = n r) r>r. (B.12)
2

Summing Eqs. (B.9) and (B.11) and using Eq. (B.4), we obtain the solution for r

less than r.

G(G r I n ro2) - (Gro)Jo(G r) r<ro. (B.13)
2

Eqs. (B.12) and (B.13) are the range-dependent Green's function for a point source

located at r = ro .

Note that Eqs. (B.12) and (B.13) are a general result for ro *- 0. In the

special (and usual) case where the source is located at r, = 0, we see from Eq.

(B.12) that we recover the usual radial Green's function

I eno) - (2) (enr) r = 0. (B.14)
2
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APPENDIX C:

Derivation of the Full DWR Solution

The DWR approximation is derived by first assuming the total field solution

can be written as

P(ko,r, roz, zo) = Po(ko,r, roz, zo)e (k°' rr.,z) , (C.1)

where Po(k 0 ,r,r o,z,zo) is a known incident field and 1(ko,r,rO,z,zo) is a complex

phase function. Substituting Eq. (C.1) into the Helmholtz" equation, (1), and

performing the differentiation gives

IV2 + (V2 + (V0)2 + k2on2 (r,z)IIPo + 2VPo'V,

6(r-r°)6(z-z) -'1 ((0.2)

27rr

From Chapter 2, we know the incident field satisfies

[2+ k,,n .zIJPO = - rr~(z 0  (C.3)

Therefore, by evaluating e-0 at the source (D is zero at the source because the

scattered field is zero), Eq. (C.2) can be reduced to

Po V 2 , + 2 VPoV = -PO (VI) 2 - k 2(n 2 (r,z) - n2(z))P 0 . (C.4)

We would like to write Eq. (C.4) in the form of a Helmholtz equation and solve for

$I using our Green's function, P. Away from the source, we can set
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P, V 2I + 2 vP0 *v = v2 + kono(z) (PoI) (c.)

so using Eq. (C.5) our differential equation, (C.4), becomes

[V2 + k2n2(z)] (Po'I,)= -Po (VI)2 - ko(n2'(r,z) - n 2(Z))P 1 0 0(C.6)

Therefore, the complex phase function, 4b, is given by the non-linear integral

equation

4b 2rko ffP(k'r,'rzz')(n2(rz) - n 2(z))PO(k°,r',rz', zo)r'dr'dz'

PO0 00

ooh

+ -o f P(k°rr"', ') [ (r"z') JPo(k,'ro 's"z) r'dr'dz' (C.7)
0 0

To obtain the first DWR approximation, we expand the complex phase in

powers of c

b(k,,r,ro,,o) = 01 + 02 + "'" (C.8)

and use Eq. (4) (the expansion on the difference of the squares of the index of

refraction). We substitute the expansions into Eq. (C.7), and equate powers of c.

The second line in Eq. (C.7) is assumed to be order e2 due to the square of the

phase gradient. This suggests that the field must vary smoothly in order for the

first DWR approximation to be valid. The first integral has one term of order 6;

therefore, to O(e), the complex phase is approximated as
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1(kr, ro,z, o) - 1 (kor, ro,z, zo)

ooh
rkof f P(kr' zz')nI(r',z')P°(kr',rz',z°)r'dr'dz' (C.9)

0 0

and the first DWR approximation is

piR) = Po- o (C.10)

as derived from the first DWB in Chapter 2.
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APPENDIX D:

Evaluation of the Range-Dependent Solution

As defined in chapter 2, the range-dependent solution for a point source

located at r = 0 is given by

r

I(nm) = H(2)(r)f Jo(enr')H12)(emr')r'dr'
0

00

+ Jo C•r)f M (D.1)

r

For clarity in the evaluation, the first integral is defined to be I1 and the second to

be 12. The integrals are evaluated differently depending on whether Cn = m or

For n*em, the integrals are evaluated as follows. We know Jo( nr) and

12) (Cmr) satisfy Bessel's equation. Choosing x(r) and y(r) to represent any

Bessel functions, we write

x" + 1 z' + $n2z = 0

and

Y,, +IY, + m2 Y 0.
r

Multiplying the first equation by r y, the second by r Z, subtracting the two

equations and combining terms gives
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r Yx" - y"- + X - Y, x (e.2 _ em2)r y

or

r (x -= --[2 em2 rxy.

To evaluate the first integral in Eq. (D.1), we set Jd(er) = x, M2)( r) = y and

integrate from 0 to r to obtain

frJo(enr')k2)(emr')r'dr'=

0

r' -m Jo(nr)H ' ' nJ e 2 e (D.2)

The solution of the second integral is obtained in a similar manner.

Multiplying the terms by their respective constants, I, and 12 become

I1o2) (enr) F 2) 1 r
1= H2) _ [emr'-')(mr')Jo( nr') - enr'Jj(enr')Hi2)(emr') (D.3)G2 _ M2 o1

Jo (.r) M - ,2)Hl 0
2 = en2 - m 2 - r nr (n')o(:)CGmr') r

Summing the contributions from the limit at r gives

7r

I r= 1 r 1 + 2 r

- Gm r _ 2 /o2)(mr) [Jo(Gr)-l2)(G r) - J(r)I1(2)(r)• (D.4)

Substituting the relations
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Jo (nr) = [H0'(Cnr) + H{) (Cr)]

Ji(CnT) = - [H ')(Cnr) + Hi2)( nr) (D.5)

into Eq. (D.4) and recognizing the Wronskian

S[MV.() (C r)141') (Cn r) - W) (nr)1(0)Cnr) 2i (D.6)2 7r~nr

we obtain the result

I(n,m) = 2i Mo2)( ,mr) (D.7)
r 7r Cn -Cm

Evaluation of I, at zero givcr 0. Evaluation of 12 at r = oo is zero assuming that

, and Cm have a small negative imaginary part. The solution then for n* ,m is

given by Eq. (D.7).

The evaluation for Cn = Cm is somewhat more complicated. Setting m=n

explicitly in the integrals gives

r

I(n,n) = o( nrj Jo(Cnr')-o2}( nr')r'dr"
0

00

+ go(r)f Ho2)(enr'), 2 )(Gr')r'dr' (D.8)

The first step is to make a change of variables. Setting y= ,r' and dr' = dy/ ,

the integrals become
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H o)flr) J, j(y)H o2)(y)ydy + J(er)0 f0 10)(y)Hk') (y) ydy (D.9)

0 &

Again, we define the first integral as I, and the second as 12 and integrate by

parts. To evaluate I,, we write

j(Y)BjM2 ) (Y) du -[jo (Y) 1 2 ) (Y) + j 1(Y)HB, 2) (Y)]d

dv = ydy V =
2

to obtain

11 k)(nr
I1- n2

- ) (0 - J "r2[Jo(y) HV' (y) + J (y)H o2')(y)] dy .(D.10)
2 0 2

Evaluating the first term at G r, (the expression is zero at y = 0), we obtain

r2 k'2) C r
r 02 G r)Jo(G nr)Hko2) (G r) .(D. 11)

2

To evaluate the remaining integral, 11, in Eq. (D.10), we substitute Eqs. (D.5) for

Jo(y) and JI(y) and combine terms. The result is

= _jj() (enr)

~ [2142)(Y)14J2) (Y) + H 1) (Y) H 2) (Y) + H41) (Y)j1( 02) (Y)] y (.

0
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Defining the first term as I,, and using Bessel's Equation

y (2) (y) -yH-( c2 ) (y) - y2 fH( 2 )(y) (D.13)

we obtain

- 0 )(.r) f y H,(2)(y) + y2H",(2)(y)] H,(2) (y) dy
0

_ 0 ((Cn0 Y2 JL(ff2) (y))2 1 d.(D. 14)
2 2 0 dy [2 1

Integrating and evaluating at the limits, III, becomes

-rill = r 6)(n r) [flu')( n r)j (D. 15)

Writing the last two terms as '112, using the relations

k 1)(Y) = Jo(Y) + iYo(y) , JH(2)(Y) = jo(Y) - iYo(y)

H 2) (Y) = J,(Y) - iY(y) , Hj') (y) = JI(y) + iY 1 (y) (D.16)

and combining terms gives

H(2 e )f"j [ 2 ]()j,()+ o()y Y
'112 = - 2) f y2 go(y)j(y) + y2 Y(Y) dy. (D.17)

Using Bessel's equation, 1112 becomes

4 2 2 + {Yi( nr)} j (D.18)

The second integral in Eq. (D.9) is found using the same techniques, but the
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evaluation is simplier because the integrand is the product of identical Bessel

functions. The solution, found by integration by parts and Bessel's equation is

12 = e2 r))' + (142) (.r))2 (D.19)

The terms contributing to the solution, I = II + 12, axe in Eqs. (D.11), (D.15),

(D.18) and (D.19). Canceling like terms, we obtain

M62 ( en ) r2)(r2 +M2) (enr) r2 [I~ 2r]
+ 4 [J( (en r)] + 4 -- [Yi( nr)] (D.20)

Writing 1H(2) (nr) = Jo(enr) - iYo(enr) in the second term and recombining

terms gives

ko')(&7 ) '2 J2o2 ) (G r) r2 r
= 1 rr [h42)(nr)] + 4 [I4) (enr) (W) (nr)) (D.21)

I= -2 4 4

where * denotes complex conjugate. Now, [/_) (enr) ] -2) (Gn r), so for real

eigenvalues

1= ( r) r)2 [142) (enr)]2 + M 2 )(enr)r 2 [M) (enr)M 2 ) ( nr)](D.22)

or recognizing the Wronskian
4i

hl ' ) (en r) H 2 (en r ) -Ho)(en r) H12 ) ( ) - 7r r (D.23)

we obtain the solution when en = er as
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r -HO_(Gr)(D.24)

7r en

Therefore, evaluation of the range integral for a depth-dependent profile results in

the solutions

2, 2 (D.25.a)

- r hi) (e r) e en. (D.25.b)
7r en

It is interesting to note that Eq. (D.25.b) also follows by applying l'Hospital's rule

to Eq. (D.25.a), in which case the result is not confined to real eigenvalues.
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APPENDIX E:

Modal Decomposition of the Perturbative Solutions

In this Appendix, we discuss the modal decomposition of the DWB and DWR

solutions. The DWB and DWR mode coefficients axe first derived for the full field

solutions. These expressions are later reduced to that of a single mode calculation

and the mode coefficients are given explicitly for the test cases in Chapter 3.

The DWB solution for a strictly depth-dependent profile is given in Eqs. (18)

and the DWR solution in Eqs. (19). Multiplying both sides of the DWB solution

by the eigenfunctions, tk(z, ), and integrating over the width of the waveguide, we

obtain

h

f pjB) (k.,rOz~z)k(z,&)dz

0

h

f [Po(ko,r,O,z, zo) + P,,(k.,r,0,z, Zo)]O(z,l) dz n =m (E.1.a)

0

and

h

f hp B) (ko Ir,O0, zj z) k(Z, el) dz

0 f [Po(ko~rOz, + pa,r,O,zO,z, (z, 6))dz +n*-m. (E.I.b)

0

Performing the same operations on the D WR solution gives
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hf pjR) (ko,r,O,z,zo) ?,(z,j) dz

0

= Po(korO'zzo) exp Z' dz n = (E.2.a)

and

h
J PjR) (ko,r,O,z,zo) Vb(z, j) dz

0

fh [PO(kO~OzZO)exp CPm(E.2.b)
0 PO Jj

Because the eigenfunctions are orthonormal over the width of the waveguide, the

dz integrals are 1 if I = n and zero otherwise. Eqs. (E.1) and (E.2) are the general

expressions used in determining the DWB and DWR mode coefficients. For

simplicity, the expressions will now be evaluated for a single mode for the test

cases discussed in Chapter 3.

The first example is of a constant velocity waveguide in which the

perturbation spans the entire waveguide. Eqs. (E.l.b) and (E.2.b) do not

contribute because the perturbation is constant. In addition, we are finding

solutions for only 1 mode. From Eq. (26), the eigenfunctions are sines; replacing

the O's with sines (see also Eq. (18.b)) in Eq. (E.l.a) and combining terms, the

single mode Born expression becomes
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1/2 fh~j B (k,,r,0, z, zo) sinA Iz dz R ±j2) (Cl r)

0

_112 in(X =f sin(- --) +i(-- si( z) (E.3)

Lh s 2hJ 0 2h1I 2e, 2h 1  2h

where A, has been replaced by e Integrating the right hand side yields
2h

1/2 f hP (B) (ko, r,, z, zo) sin( ") dz

Dividing through by the range solution, ite 2)(Cj, the resulting Born mode
4

coefficient, CIB, in a constant velocity waveguide is given by

CB= _1 1/2 si rz 0 [ ikn (E.5)
hl 2h~n~- ) i + 2C I -

Because the Rytov solution is essentially an exponentiated Born, to avoid the

simple analysis, we will simply state the result. The Rytov mode coefficient, C11 t

is

CIR = [1/ sin( r-)exp [ (E.6)

The second example for which the first mode coefficient is derived is a two-layer

waveguide. The velocity is constant in each layer and the background profile a
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constant over the entire waveguide. Again, Eqs. (E.l.b) and (E.2.b) are not

evaluated because we are interested in single mode analytic solutions.

In this case, the mode functions are not the same for the true and background

profiles. The true mode functions are given in Eq. (38) and the background modes

are sines. The Born and Rytov approximations, although cc-structed from the

guess modes, are multiplied by the true mode functions to obtain the mode

coefficients.

From Eqs. (E.l.a), (38) and (40.a), the Born projection equation is

h

f ptB) (k.,r,O,z, zo)t1(z, )dz _ _ . , ro , ,A-i
2h slnn2h A0-0

fO".(h l z' . h ]
sAnIzl fZsin(-!-) sinAll dz + fsi(-)cOSAoI(h-z ) dz

0 Z I

rJ sin(z 1

ik2 rn 1 H12) lin(nrz 1 -h -  s -
4lh rn2h h 7r

COSAo, (h-zl) fZ, z f' z
sinA11Zl f sin(-!-) sinAi1 dz + fsin(-!) cOSAol (h-z) dz . (E.7)

0 Z I

Integrating, combining terms and dividing by the range solution yields

7r Zo ik 2orn, z, sin(--h
o= Vr sn1+(E.8)CIB in- -21h 2h~l h 7r
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where A is given by

V/A \/- 116h'sin(-I) cosA~j (h-zl)

[2h,\i2A\OItanjOI (h-zi)-2hA\ 20 \11 COtA\11 zj+7r (1\0 1 2 1 2] cot(TIh-1 (E.9)

7r2- 4h 2 \ 2] H2 - 4h 2 A11 2)

Accordingly, the Rytov is

2rin 7rZi

CIR =VT(lZO Ir 1 sin(-!O)x -j-) h1](E 02hi - i (.o


